• Title, Summary, Keyword: acetic acid fermentation

Search Result 566, Processing Time 0.048 seconds

Effect of Temperature on the Production of Free Organic Acids during Kimchi Fermentation

  • Park, Young-Sik;Ko, Chang-Young;Ha, Duk-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.266-269
    • /
    • 1993
  • The production of free non-volatile and volatile organic acids in Kimchi during fermentations at 30, 20 and $5^{\circ}C$, were determined by gas chromatography. The order in the amount of non-volatile organic acid, soon after preparation, was malic, citric, tartaric, pyroglutamic, oxalic, lactic, succinic and ${\alpha}-ketoglutaric$ acids. The major non-volatile acids at the optimum ripening time were malic, tartaric, citric and lactic acids, and as the temperature was lowered, the amount of lactic, succinic, oxalic, pyroglutamic and fumaric acids increased, while that of malic and tartaric acids decreased. The order in the amount of volatile acids at the beginning was acetic, butyric, propionic and formic acids. Among these acids, acetic acid was significantly increased in its amount during fermentation and the Kimchi fermented at low temperature produced more acetic acid than that fermented at high temperature.

  • PDF

Acidic Beverage Fermentation Using Citrus Juice and Antimicrobial Activity of the Fermented Beverage (감귤과즙을 이용한 산형음료 발효 및 발효음료의 항균효과)

  • Jeong, Ji-Suk;Kim, Seong-Ho;Kim, Mi-Lim;Choi, Kyoung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.8
    • /
    • pp.1037-1043
    • /
    • 2008
  • In this experiment, citrus juice was fermented by Gluconacetobacter hansenii TF-2, an isolate from tea fungus to develop a new type of acidic beverage. The juice broth is made by fermenting of $11{\sim}17%$ (v/v) juice and sweetened with sucrose (initial sucrose $10^{\circ}Brix$). The fermentation by G. hansenii TF-2 was initiated by adding 5% (w/v) of seed gel (pellicle, tea fungus) which was previously cultured in the same medium (fresh juice broth) and the fermentation was carried out in a dark incubator at $28{\sim}30^{\circ}C$ for about 15 days. During the fermentation a pellicle grew on the surface of the fermenting fluid and acids were produced. Fermented fluid (beverage) was centrifuged at 7,000 rpm for 15 min for further analyses. The highest amount of the other metabolites including organic acids were observed in 5 to 10 days. Major acids were acetic acid (fermented citrus beverage, CB). After 15 days of fermentation, organic acid content such as acetic acid in fermented beverage was measured to be $183.5{\sim}186.6\;ppm$. Free sugars content in CB were 56.8%, 35.1%, 40.7% and 63.2% of unfermented sucrose, glucose, fructose and sorbitol, respectively. When the growth rate of inhibitory effect of the fermented beverage was measured by using several species of food-related bacteria, the beverage fermented with CB exhibited the strongest inhibition against gram-negative (E. coli and Sal. Typhimurium). Its inhibition rate was between $71.9{\sim}94.0%$ at CB. Fermented beverage has shown effectiveness for antimicrobial activity against some species of food-related bacteria.

Changes of Volatile Flavor Compounds in Traditional Kochujang during Fermentation (재래식고추장 숙성과정 중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.745-751
    • /
    • 1997
  • Volatile flavor components of kochujang made from a glutinuous rice by traditional method were analyzed by using purge and trap method during fermentation, and identified with GC-MSD. Fifty-one volatile components including 19 alcohols, 13 esters, 7 acids, 3 aldehydes, 1 alkanes, 2 ketones, 2 amines, 1 benzene, 1 alkene, 1 phenol and others were found in kochujang made by traditional method. The number of volatile components detected immediately after making kochujang were 22 and increased to 41 components after 30 day of fermentation. The most number 51 of volatile components were found after 120 day of fermentation. Twenty-two volatile components were commonly found through the fermentation period such as acetic acid ethyl ester, ethanol, butanoic acid ethyl ester, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, butanoic acid and ethenone. Peak area(%) of 1-butanol was the highest one among the volatile components at immediately after mashing while ethanol showed the highest peak area after 30 day of fermentation. Although the various types of peak areas of volatile components were shown in kochujang during the fermentation days, acetic acid-ethyl ester, ethanol, butanoic acid-ethyl ester, 1-butanol, 3-methyl-1-butanol and 2-methyl-1-propanol were mainly detected during fermentation. Those might be the major volatile components in kochujang made by traditional method.

  • PDF

Analysis of Optimum Condition for Production of an Onionic Vinegar by Two-Step Fermentations (2단계 발효에 의한 양파식초 제조의 최적 조건 검토)

  • Kim, Sam-Woong;Park, Jai-Hyo;Jun, Hong-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1410-1414
    • /
    • 2008
  • This study was carried out to develop a vinegar by an onion juice. Onions are considered to be a promising source of the vinegar because these are rich in sugars, amino acids and various nutrients. An Acetobacter for an acetic acid fermentation was isolated and used from vinegars produced by industrial goods or from matured Kimchi. When supplemented with 2-8% ethanol into an onionic juice medium, the highest production of the acetic acid was observed at 9 days by addition of 4% ethanol. Optimum temperature and aeration for acetic acid production were exhibited at $30^{\circ}C$ and 200 rpm, respectively. A flask containing larger air-contact surface region for fermentation was produced the more acetic acid than that of a test tube. Taken all these together, an optimum condition for the acetic acid fermentation was over 9 days at $30^{\circ}C$, 200 rpm with 5% alcohol and 2% initial acidity. When fermented by the upper condition, the final product contains 5.2% total acidity and less than 1% ethanol. These are suitable for conditions of fruit vinegar notified by the Ministry of Commerce, Industry and Energy.

Effect of Organic Acids Addition during Salting on the Fermentation of Kimchi (배추의 소금절임시 유기산 첨가가 김치 숙성에 미치는 영향)

  • 박인경;김순희;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.195-204
    • /
    • 1996
  • This study was conducted to enhance the shelf-life of Kimchi and to make the unique taste of Kimchi by fermentation control. Kimchis, Prepared by win baechu soaked in 10% salt solutions containing 0.2-0.3% organic acids (OS-Kimchi), acetic acid, citric acid (CA-Kimchi), lactic acid, its mixtures and formic acid+acetic acid+fumalic acid+malic acid+citric acid(FAFMC), were examined for pH, titratable acidify, sensory evaluation, the number of total microbe and lactic acid bacteria, content of organic acids and texture during fermentation at 1$0^{\circ}C$. The decrease of pH and the increase in acidity, CA-Kimchi showed lower than those of control and various OS-Kimchi. Total microbe, lactic acid bacteria, content of lactic acid of CA-Kimchi were lower than those of control. The hardness of CA-Kimchi measured instrumentally was higher than that of control. Sensory scores of CA-Kimchi were also lower than those of control, so the Kimchi maintained good crispness and overall taste.

  • PDF

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

Quality Comparison of Potato Vinegars Produced by Various Acetobacter Bacteria (초산균에 따른 감자식초의 품질 비교)

  • 서지형;정용진;김주남;우철주;윤성란;김대현
    • Korean Journal of Food Preservation
    • /
    • v.8 no.1
    • /
    • pp.60-65
    • /
    • 2001
  • To investigate the effect of Acetobacter on qualities of potato vinegars, potato vinegars were produced through acetic acid fermentation using 3 Acetobacters such as Acetobacter sp. PA97, Acetobacter sp. PA96 and Acetobacter pasterianus JK 99. There were little difference in pH(2.90∼3.09) and total acidities(5.30∼5.60%) of 3 potato vinegars. However potato vinegar(II) fermented by Acetobacter sp. PA96 showed a little difference in color values with other potato vinegars. Except acetic acid in each potato vinegars, the contents of citric acid, oxalic acid, succinic acid were high in potato vinegar(I), malic acid in potato vinegar(II) and lactic acid in potato vinegar(III). The contents of glutamic acid alanine, histidine and proline were high in all potato vinegars. The major volatile components in 3 potato vinegars were acetic acid, isoamyl acetate, isobutyl acetate, 3-methyl-1-butanol, 3-methyl-butanoic acid and phenethyl alcohol. Also composition ratio of volatile components was a little difference among 3 potato vinegars.

  • PDF

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

Quality Characteristic and Antioxidant Activities of Vinegar Added with Etteum Bell Flower Root (으뜸도라지 식초의 저장기간별 품질 특성 및 항산화 활성)

  • Lee, Yeon-Jin;Byun, Gwang-In;Jin, So-Yeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.549-558
    • /
    • 2018
  • The aim of this study was to investigate the characteristics and antioxidant activities of vinegar made with Etteum bell flower root (0.5%, 1%, 1.5% and 2%) during two-step fermentation. Acetic acid was fermented at $30^{\circ}C$ for 16 days and samples of vinegar were extracted at 2, 4, 6, 8, 10, 12 and 16 days. The pH of Etteum bell flower root vinegar did not significantly differ among the samples, but the acidity increased during fermentation. Alcohol content decreased at 16 days of fermentation and less than 1% alcohol was shown in all samples after fermentation. The pure acetic acid yield was 88.85~98.97%, whereby the total phenolic compound content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities increased as the ratio of the Etteum bell flower root increased. The sensory scores of vinegar fermented with 1.5% Etteum bell flower root are greater than those of vinegar prepared by other treatments. Therefore, vinegar with 1.5% Etteum bell flower root added is considered to be the most suitable for manufacturing.

Surface Film Formation in Static-Fermented Rice Vinegar: A Case Study

  • Yun, Jeong Hyun;Kim, Jae Ho;Lee, Jang-Eun
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.250-255
    • /
    • 2019
  • In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0-3.3 and 3.0-8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ${\sim}1{\times}2{\mu}m$ in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.