• Title, Summary, Keyword: aluminum electrical wire

Search Result 37, Processing Time 0.032 seconds

Development of High Strength and Low Loss Overhead Conductor(II) - Electric Properties (고강도 저손실 가공송전선의 개발(II) - 전기적 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Park, Joo-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1159-1165
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the Process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material NM wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. The conductivity at 0.78 mm thickness of Aluminum cladded M wire is about $7\%$ IACS higher than $20\%$IACS of HC wire used as core of commercial ACSR overhead conductor. The corrosion resistance is about 3 times higher than that of HC wire.

A Study of Characteristics of the Wire-cut EDM Process in Aluminum Alloys (알루미늄합금의 와이어 컷 방전기공 특성에 과한 연구)

  • Lyu, Sung-Ki;An, Soon-Geon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.21-25
    • /
    • 2004
  • This study deals with the characteristics of wire-cut EDM(Electrical Discharge Machining)process in aluminum alloys. Besides 2 series and 7 series of aluminum alloys for aerospace applications, porous aluminum is tested, which is used for sound absorbing matherial and interior and exterior material of building. Jinyoung JW-30 wire cutting machine was used in this experiment. Tap wate passed a filter and ionization was used as the discharging solution. An immerision method was applied as a cooling method because it separates chips effectively and machinability is good even with low value of electric current. The speed of fabrication was estimated by measuring the travel distance of the work piece and time spent for the movement. As pulse-on-time increased the fabrication speed decreased. On the other hand, as peak voltage of peak current increased the fabrication speed increased. In general 7075 aluminum alloy resulted in higher fabrication speed.

The Recycling Technology for Aged Aluminum Wire in Overhead Conductor (폐가공송전선 Al선재 재활용 기술개발)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.555-562
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor has been carried out. The authors are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The new recycling technology for aged aluminum wire in overhead conductor was composed of four steps in different develop process, destranding process for conductor, surface cleaning process, welding process and drawing process for aluminum wire. This paper investigates the properties during recycle process of aged aluminum wire. The results of microscopic analysis and mechanical properties were discussed to underscore recycling aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process. In conclusion, we confirmed the possibility of remanufacturing technique by using new process.

The Cold Welding Properties for Al Wire of Aged Overhead Conductor (폐가공송전선 Al선재 냉간접합 특성)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.415-420
    • /
    • 2013
  • The new recycling technology for aged Aluminum wires in overhead conductor have been carried out. We are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The weld of aged aluminum wires play a vital role in remanufacture process. The paper investigates the mechanical properties during cold welding process of aged Aluminum wire. The tensile tests and microscopic analysis results are discussed to underscore the hardening features of welded aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process.

Defective Surface Analysis of Aluminum Bonding Pads for Au Wire Bonding

  • Son, Dong-Ju;Ji, Yong-Joo;Jeon, Yoon-Su;Soh, Dae-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.4-4
    • /
    • 2009
  • Surface analysis on defective wire-bonding pads are performed in flash memory assembly. Week wire bonding may cause a significant effect on the final product reliability, and the surface condition of the aluminum bond pads is critical in terms of product reliability. To find out possible week bonding on semiconductor interconnects, ball sheer test (BST) has been performed. On some defective or week bonded pads, we have investigated the surface contents, assuming that the week bonding is induced from the surface conditions. AES and XPS are employed for the quantitative surface analysis on defective dies.

  • PDF

The Drawing Properties of Aluminum Wire in Aged Overhead Conductor (폐가공송전선용 Al선재의 신선가공 특성)

  • Kim, Shang-Shu;Ku, Jae-Kwan;Lee, Young-Ho;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.482-487
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor have been carried out. We are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The drawing process of aged aluminum wires play a role in remanufacture process. Drawing process was performed under lubricant. The speed of drawing was between 500 m/min and 1,000 m/min. These machines have 11 or 12 dies house for breakdown of the feedstock. Material of the die is tungsten carbide and they have generally 25% reduction ratio. The paper investigates the mechanical properties during drawing process of aged aluminum wire. The results of tensile tests and microscopic analysis were discussed to underscore the hardening features of drawing aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process.

Development of High Strength and Low Loss Overhead Conductor(I) - Mechanical Properties (고강도 저손실 가공송전선의 개발(I) - 기계적 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Park, Joo-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1152-1158
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor. This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material M wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. NM wire developed as core of overhead conductor shows heat resistant characteristics higher than that of HC wire used as core of commercial ACSR overhead conductor, Strength loss was not occur at heat resistant test below $600^{\circ}C$. Fatigue strength of vibration fatigue is about $32kgf/mm^2\~35kgf/mm^2$ and that of tension-tension fatigue is $90kgf/mm^2\~120kgf/mm^2$ which is $50\~65\%$ of tensile strength.

Application of Amorphous wire to ECT(Eddy Current Testing) Probe (아몰퍼스 와이어의 ECT probe 적용에 대한 검토)

  • Kim, Y.H.;Shin, K.H.;SaGong, Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.47-51
    • /
    • 2002
  • ECT(eddy currentign testing) is very effective technique to detect a flaw within a conductor. Co-based amorphous wire was used as a sensor head. The wire has almost 0 magneto-striction and high permeability. An uniform magnetic field was applied to 1mm thick copper plate and $25{\mu}m$ thick aluminum sheet conductor using spiral typed coil The size of the coil has $40mm{\times}40mm$ outer width and $8mm{\times}8mm$ inner width. The copper plate and aluminum sheet has 0.5mm and 0.1mm wide gap, respectively. The frequency range of applied field was 100kHz-600kHz. The induced voltage difference of 2.5mV was obtained in the maximum voltage and minimum one measured across the gap of the 1mm thick conductor. In the case of aluminum sheet, 0.4mV was obtained. From this results, the effectiveness of Co-based amorphous wire was confirmed in the ECT technique.

  • PDF

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

Microstructure and Mechanical Properties of an AA1070 Wire Severely Deformed by Drawing Process (인발공정에 의해 강소성 가공된 AA1070선재의 미세조직 및 기계적 특성)

  • Jeong, Dae-Han;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.308-314
    • /
    • 2020
  • A commercial AA1070 alloy for electrical wire is severely deformed by drawing process in which a rod with an initial diameter of 9mm into is reduced to a wire of 2mm diameter. The drawn AA1070 wire is then annealed at various temperatures from 200 to 450 ℃ for 2h. Changes in microstructure, mechanical properties and electrical properties of the specimens with annealing temperature are investigated in detail. The specimen begins partially to recrystallize at 250 ℃; above 300 ℃ it is covered with equiaxed recrystallized grains over all regions. Fiber textures of {110}<111> and {112}<111> components are mainly developed, and {110}<001> texture is partially developed as well. The tensile strength tends to decrease with annealing temperature due to the occurrence of recovery or/and recrystallization. On the other hand, the elongation of the annealed wire increases with the annealing temperature, and reaches a maximum value of 33.3 % at 300 ℃. Electric conductivity of the specimens increases with annealing temperature, and reaches a maximum value of 62.6 %IACS after annealing at 450 ℃. These results are discussed in comparison with those for the other aluminum alloy.