• Title, Summary, Keyword: amylograph

Search Result 213, Processing Time 0.074 seconds

Study on the Physico-chemical Properties of Rice Grains Harvested from Different Regions (재배환경이 다른 쌀의 이화적적 특성에 관한 연구)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.234-242
    • /
    • 1987
  • Rough rice samples of four rice varieties were collected from twenty five locations through the country just after 1986 rice growing season. Various characteristics related to rice grain quality were observed to clarify the degree of locational variation of physico-chemical properties, and cooking and eating quality of rice grains. Grain weight, grain shape, degree of translucency and chalkiness of rice grain, amylogram properties of rice flour, water uptake during cooking, and cooked rice appearance were different between varieties tested. High degree of locational variation were found in following characteristics, degree of translucency and chalkiness of rice grain, water uptake during cooking, cooked rice appearance and amylogram properties. Eating quality of cooked rice indicated by sensory score showed different tendency of locational variation between rice varie-ties tested, and locations produced rice grains showing better eating quality were not coinside with among varieties tested. Grain weight, degree of translucency and chalkiness of rice grain, and cooked rice appearance of rice samples showing better eating quality were quite different to rice grains showing poor eating quality. Rice having better eating quality of a japonica variety, Chucheong, showed higher value of peak and final viscosity, viscosity after cooling, consistency and set back on amylograph compared with those of poor eating quality rices, and break down value of better rice was lower than that of poor rice. However, a Tongil type variety, Taebaek, did not show any consistent difference between better and poor rices. Rice samples from six locations in Chucheong and four locations in Taebaek showed special properties on amylogram compared with other rices collected in this study.

  • PDF

Physicochemical Properties and Gel Forming Properties of Mungbean and Buckwheat Crude Starches (녹두와 메밀 조전분의 이화학적 특성 및 겔 형성)

  • 주난영;이혜수
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 1989
  • The physicochemical properties and gel forming properties of mungbean and buckwheat crude starches were investigated. The results were as follows; 1. The granule size and shape of mungbean crude starch were $11~32\mu\textrm{m}$ and oval, and those of buckwheat crude starch were $3~10 \mu\textrm{m}$ and polygonal. 2. The amylose conteut of mungbean crude starch and buckwheat crude starch were 78.0% and 26.4% respectively. 3. The blue value of mungbean crude starch and buckwheat crude starch were 1.030 and 0.409, respectively. 4. Periodate oxidation of mungbean crude starch resulted that amylose had the average molecular weight of 95, 648, degree of polymerization of 590 and amylopectin had the degree of branching of 5.4, glucose unit per segment of 18.6, and periodate oxidation of buckwheat crude starch resulted that amylose had the average molecular weight of 133, 690, degree of polymerization of 825 and amylopectin had the degree of branching of 5.2, glucose unit per segment of 19.2 5. Water binding capacity of mungbean crude starch was 185.1% and that of buckwheat was 209.9% 6. The pattern of change in swelling power of mungbean crude starch for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, and that of buckwheat increased slowly from $60^{\circ}C$ to $90^{\circ}C$ without rapid increase. 7 The ranges of gelatinization temp. of mungbean and buckwheat crude starches were 63. 9-$109^{\circ}C$ and 52.5-84.$2^{\circ}C$, respectively. 8. The gelatinization patterns for 6% munbean crude starch and 8% buckwheat crude starch were investigated by Brabender amglograph. Mungbean crude starch showed the initial pasting temperature of 77.6$^{\circ}C$ without peak height, and buckwheat crude starch showed that of $62.5^{\circ}C$ without peak height. In addition, sensory evaluation for sample starch gels (mungbean, buckwheat, cowpea) was done. 1. The difference of sensory characteristics for each starch gel was significant. 2. The sample starch gels were regarded as 'Mook' by pannels. 3. 74.44% of the degree of Mooklike was explained by hardness.

  • PDF

Effects of Maltogenic Amylase on Textural Properties of Dough and Quality Characteristics of White Pan Bread (Maltogenic Amylase가 식빵반죽의 물성과 식빵의 품질 특성에 미치는 영향)

  • Yoon, Seongjun;Cho, Namji;Lee, Soo-Jeong;Moon, Sung-Won;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.752-760
    • /
    • 2015
  • Effects of maltogenic amylase on textural properties of dough and quality characteristics of white pan bread were investigated. White pan bread was prepared with four different levels of maltogenic amylase contents (M-1: 0.048 U/g, M-2: 0.060 U/g, M-3: 0.072 U/g, M-4: 0.084 U/g). The setback by amylograph for the control was $480.0{\pm}12.25$ Brabender Unit (B.U.) while M-4 showed the a setback of $215.0{\pm}5.00B.U.$ The absorption, mixing tolerance index, and stability by farinogram were not significantly different (P>0.05) for across all treatments. The area under the curve (135 min) by extensogram was higher than all samples. The texture profile analysis results showed that there was significant decreasing in hardness for the maltogenic amylase infused bread (P<0.05). M-3 and M-4 showed higher springiness and cohesiveness but lower hardness than control over 1 to 3 days, indicating possibly extended shelf-life. Imaging scan showed that air cell size less than $0.4mm^2$ for the control and M-4 were at rates of 94.90% and 95.70%, respectively. For sensory evaluation, M-3 and M-4 showed higher intensities than the control for taste, flavor, texture, mouthfeel, and moistness quality. These results imply that the quality of white pan bread could be improved by adding maltogenic amylase without the use of chemical additives.