• Title, Summary, Keyword: antifungal activity

Search Result 1,160, Processing Time 0.041 seconds

Studies on the Antifungal Activity of Capsaicine for 'Ganjang' Soy Sauce (Capsaicine의 간장방미효과에 관한 연구)

  • 심길순
    • YAKHAK HOEJI
    • /
    • v.8 no.3
    • /
    • pp.69-73
    • /
    • 1964
  • Cayenne pepper used traditionally as hot seasoning and for antifungal agent in "Ganjang" soy sauce in Korea. However the correlation between its component and antifungal activity has been unknown. CApsaicine is known as hot component of cayenne pepper. Antifungal activity of capsaicine in 'Ganjang' soy sauce was studied and the results are as follows; 1) In 'Ganjang' soy sauce, antifungal activity of capsaicine were strong in same degree with butyl-p-hydroxybenzoate. 2) Antifungal activity of capsaicine were intensified by the addition of sodium chloride. 3) The antifungal activity of capsaicine was increased by lower pH (pH 5.5-4.5) of 'Ganjang' soy sauce.

  • PDF

Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67

  • Lee, Kwang Youll;Kong, Hyun-Gi;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.373-380
    • /
    • 2012
  • Burkholderia pyrrocinia CH-67 is a biocontrol bacterium with strong antifungal activity against several plant pathogenic fungi. Transposon mutagenesis was performed to identify the genes responsible for the antifungal activity of B. pyrrocinia CH-67. Of the 2,500 mutants tested using the Fulvia fulva spore screening method, a mutant deficient in antifungal activity, M208, was selected. DNA sequence analysis of the transposon-inserted region revealed that a gene encoding an adenylate kinase-related kinase was disrupted in M208. Antifungal activity was restored in M208 when a full-length adenylate kinase gene with its promoter was introduced in trans. The deduced amino acid sequence of adenylate kinase from CH-67 was 80% identical to that of B. cenocepacia MCO-3. Adenosine diphosphate supplementation or high levels of adenosine triphosphate and adenosine monophosphate together restored antifungal activity in M208, suggesting that adenylate kinase of B. pyrrocinia CH-67 is involved in antifungal activity expression.

Screening of the Antifungal Activity from Natural Products against Candida albicans and Penicillium avellaneum (Candida와 Penicillium 속 진균에 대한 천연물의 항진균 효과 검색)

  • Min, Byeong-Seon;Bang, Gyu-Ho;Lee, Jun-Seong;Bae, Gi-Hwan
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.582-590
    • /
    • 1996
  • For the research of antifungal active constituents from natural products, 226 plants were extracted with ether and methanol, separately, and screened antifungal activity against Candida albicans and Penicillium avellaneum cells. The results demonstrated that 30 samlpes showed antifungal activity in ether or methanol extracts and 17 samples in ether extracts and 20 samples in methanol extracts against C. albicans. Against P. avellaneum, 19 samlpes showed antifungal activity in ether or methanol extracts and 17 samples in ether extracts and 11 samples in methanol extracts, respectively. The antifungal activity of natural products against C. albicans were showed more sensitive than P. avellaneum, and the polarity of the solvent was not specific in antifungal activity.

  • PDF

Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi (중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용)

  • 이상화;김창진
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

Structure-Antifungel Activity Relationships of Cecropin A Hybrid Peptides against Trichoderma sp.

  • Shin, Song-Yub;Lee, Dong-Gun;Lee, Sung-Gu;Kim, Kil-Lyong;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.21-24
    • /
    • 1997
  • The hybrid peptides, CA-ME, CA-MA and CA-BO, with the N-terminal sequence 1-8 of cecropin A and the N-terminal sequences 1-12 of melittin, magainin 2 and bombinin, respectively, have more improved antibacterial activities. CA-MA was found to have stronger antifungal activity against Trichoderma sp than other hybrid peptides and their parental peptides. In order to elucidate the relationships between the peptide structure and antifungal activity, several analogues of CA-MA or CA-BO were also designed and synthesized by the solid phase method. An tifungal activity was measured against T. reesei and T. viride, and hemolytic activity was measured by a solution method against human red blood cells. The residue 16 of CA-MA, Ser, was found to be important for antifungal activity. When the residue was substituted with Leu, showed powerful antifungal activity was dramatically decreased. CA-MA, P1, P4 and P5 designed in this study showed powerful antifungal activity against T. reesei and T. viride with low hemolytic activity against human red blood cells. These hybrid peptides will be potentially useful model to further design peptides with powerful antifungal activity for the effective therepy of fungal infection and understand the mechanisms of antifungal actions of hybrid peptides.

  • PDF

Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

  • Huh, Chang Ki;Hwang, Tae Yean
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not $H_2O_2$. The molecular weights of the antifungal substances were ${\leq}3,000Da$. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

Fungicidal Activity of Substance Purified from Marine Fungus Metabolites against Pyricularia oryzae

  • Byun Hee-Guk;Kim Se-Kwon
    • Fisheries and aquatic sciences
    • /
    • v.5 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Pyricularia oryzae (P. oryzae), the cause of rice blast, is one of the most important fungal pathogens of rice. Seventy strains of marine fungi were isolated from marine algae, and it was measured antifungal activity against P. oryzae. Metabolites of marine fungus A-248 which isolated from marine algae showed strong antifungal activity against P. oryzae. The antifungal substance from the metabolites of marine fungus A-248 was extracted with ethylacetate, and then purified by preparative TLC and reverse-phase HPLC. The minimum inhibitory concentration (MIC) value was $0.18\mu g/mL$ for the antifungal activity of the substance purified from A-248 metabolites. The purified substance was similar to antifungal activity of rhizoxin, which is a commercial antifungal agent.

Synergistic Antifungal Activity against Disseminated Candidiasis by Combination Therapy of Crataegi Fructus Extract and Fluconazole (전신성 캔디다증에 대한 산사자 추출물과 Fluconazole의 병용요법에 의한 항진균 상승효과)

  • Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.59 no.6
    • /
    • pp.259-265
    • /
    • 2015
  • In recent, there are increasing reports about pharmacological activities of Crataegi Fructus which has been used for many centuries as medicinal and food sources in East Asia. However, its antifungal efficacy needs to be investigated. Thus, in the current study, we determined synergistic antifungal activity of the Crataegi Fructus extract (CFE) when combined with fluconazole (FLC) against disseminated candidiasis due to Candida albicans. This fungus is one of the most problematic fungal pathogens. Data resulting from a microdilution susceptibility test showed that CFE had a dose-dependent antifungal activity. When the extract was combined with FLC, the activity was synergistic. For example, the antifungal activity by the combination of CFE at $20{\mu}g/ml$ plus FLC at $0.1{\mu}g/ml$ was 4 times more effective than antifungal activity by FLC alone at the same concentration (P<0.05). In the murine model of disseminated candidiasis, the combination therapy potentiated resistance of mice, resulting in 80% of C. albicans-infected animals surviving the entire period of 40 days observation, whereas mice given CFE alone or FLC alone all died with 17 and 23 days, respectively, although they survived longer than the untreated control animals (P<0.05). The CFE's antifungal activity seemed to be related to the blockage of hyphal production of C. albicans yeast cells. In summary, CFE has a synergistic antifungal activity, which can be produced by combining CFE with FLC. Thus, our data strongly indicate that CFE may be a potential candidate as an antifungal agent for combination therapy.

Chemical Constituents of the Fruiting Bodies of Clitocybe nebularis and Their Antifungal Activity

  • Kim, Young-Sook;Lee, In-Kyoung;Seok, Soon-Ja;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • During a continuing search for antimicrobial substances from Korean native wild mushroom extracts, we found that the methanolic extract of the fruiting body of Clitocybe nebularis exhibited mild antifungal activity against pathogenic fungi. Therefore we evaluated the antifungal substances and other chemical components of the fruiting body of Clitocybe nebularis, which led to the isolation of nebularine, phenylacetic acid, purine, uridine, adenine, uracil, benzoic acid, and mannitol. Nebularine showed mild antifungal activity against Magnaphorthe grisea and Trichophyton mentagrophytes, and phenylacetic acid potently inhibited the growth of Pythium ultium and displayed moderate antifungal activity against Magnaphorthe grisea, Botrytis cinerea, and Trichophyton mentagrophytes. The other isolated compounds showed no antimicrobial activity.

Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity

  • Park, Gwee-Kyo;Lim, Jong-Hui;Kim, Sang-Dal;Shim, Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.326-330
    • /
    • 2012
  • Antifungal metabolites were isolated from a culture of Pseudomonas aurantiaca IB5-10. Chemical structures of the metabolites were elucidated as phenazine-1-carboxylic acid (PCA; 1), 2-hydroxyphenazine (2-OH-PHZ; 2), and cyclo-(L-Pro-L-Val; 3), respectively, based on spectroscopic methods. Among them, 3 was isolated for the first time from this strain. The antifungal activities of 1-3 were evaluated against a variety of plant pathogens. To the best of our knowledge, the antifungal activities of 3 against plant fungal pathogens have been evaluated for the first time in this work. PCA (1) showed the most potent antifungal activities against Phytophthora capsici, Rhizoctonia solani AG-1(IA), and Pythium ultimum with MICs (${\mu}g/ml$) of less than 1.0, 1.3, and 2.0, respectively. On the other hand, 2-OH-PHZ (2) showed potent antifungal activity against R. solani AG-1(IA) with the MIC (${\mu}g/ml$) of 2.0, whereas it showed moderate antifungal activity against P. ultimum with the MIC (${\mu}g/ml$) of 50.0. In addition, 3 showed antifungal activity against only R. solani AG-1(IA).