• Title, Summary, Keyword: artificial rat milk

Search Result 4, Processing Time 0.042 seconds

The Effect of Motor Skill Training on Motor Function and Cerebellar Development After Alcohol Exposure in Neonatal Rats (운동기술훈련이 태아알코올증후군 흰쥐 모델의 소뇌 발달과 운동기능에 미치는 영향)

  • Koo, Hyun-Mo
    • Physical Therapy Korea
    • /
    • v.16 no.2
    • /
    • pp.50-58
    • /
    • 2009
  • The purpose of this study was to test that motor skill training enhance motor function and cerebellar development. Using an animal model of fetal alcohol syndrome-which equates peak blood alcohol concentrations across developmental period-critifical periods for the effect of alcohol on body and cerebellar weigh was examined. The effect of motor skill training on motor function and cerebellar development of rat exposed alcohol on postnatal days 4 through 10 were studied. Newborn rats were assigned to one of two groups: (1) Control group (CG), via artificial rearing to milk formula and (2) experimental groups (EG), via 4.5g/kg/day of ethanol in a milk solution. After completion of the treatments, the pups were fostered back to lactating dams, and wearing they were raised in standard caged until they were postnatal 48 days. Rats from experimental group of postnatal treatment then spent 10 days in one of two groups: Experimental group II (EGII) was had got motor skill training (training traverse a set of 6 elevated obstacles) for 4 weeks. Experimental group I (EGI) was not trained. Before sacrificing, the rat got examined two behavioral test, body weigh and cerebellar weigh, then coronal sections were processed. The section was investigated the Purkije cell in the cerebellum using light microscope. The results of this study were as follows. 1. In body weight test, the outcome of alcohol groups were significantly lower than the normal group. 2. In cerebellar weight test, the outcome of EGI were significantly lower than CG and EGII. 3. In motor behavioral test, the outcome of EGI was significantly lower than NG and EGII. 4. In Purkinje cells counting test, the outcome of EGI was significantly lower than the NG and EGII. These result suggest that improved motor function induced by motor skill training after postnatal exposure is associated with dynamically altered expression of Purkinje cells and that is related with cerebellar function. Also, these data can potentially serve as a model for therapeutic intervention.

  • PDF

Effect of n-3 Fatty Acid Deficiency on Fatty Acid Composition in Brain, Retina and Liver Using a Novel Artificial Rearing System (인공 사육 동물 모델 시스템을 이용한 n-3 지방산 결핍이 쥐의 뇌, 망막, 간의 지방산 조성에 미치는 영향)

  • Lim, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.4
    • /
    • pp.466-475
    • /
    • 2005
  • Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in membrane of brain and retina, and plays an important role in maintaining an optimal function of the central nervous system. We investigated the effect of n-3 fatty acid deficiency on rat brain, retina and liver fatty acyl composition at two different ages (3 wks and 15 wks) under DHA deficient condition. Rat pups born to dams fed a diet with $3.1\%$ of total fatty acids as $\alpha-linolenic$ acid (LNA) were fed using an artificial rearing system either an n-3 deficient (n-3 Def) or n-3 adequate (n-3 Adq) diet. Both diets contained $17.1\%$ linoleic acid (LA) but the n-3 Adq diet also contained $3.1\%$ LNA. Rats consuming the n-3 Def diet showed a lower brain $(50\%\;in\;13\;wks\;and\;70\%\;in\;15\;wks,\;p<0.05)$ and retinal $(50\%\;in\;13\;wks\;and\;63\%\;in\;15\;wks,\;p<0.05)$ DHA than those on the n-3 Adq diet, which was largely compensated for by an increase in docosapentaenoic acid (22:5n-6, DPAn-6). In the liver of the n-3 Def group, the percentage of DHA decreased by $97\%$ at 3 wks of age with an apparent increase in DPAn-6 relative to the n-3 Adq group (p<0.05), while there was a $65\%$ lower liver DHA in n-3 Def group at 15 wks of age than the n-3 Adq group (p<0.05). Liver arachidonic acid (20:4n-6, AA) was increased at 3 wks of age but decreased at 15 wks of age in the n-3 Def group compared with n-3 Adq group (p<0.05). In conclusion, the replacement of DHA by DPAn-6 in brain and retina fatty acid composition may be related to the suboptimal function in spatial learning, memory and visual acuity. This artificial rearing method presents a first generation model for n-3 deficiency that is similar to the case of human nutrition that commonly employed two generation model.

Effect of n-3 fatty acid deficiency on fatty acid compositions of nervous system in rats reared by artificial method. (N-3 지방산 결핍이 혈청 및 신경조직의 지방산 조성에 미치는 영향)

  • Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.5
    • /
    • pp.634-640
    • /
    • 2007
  • Our previous study suggested that n-3 fatty acid deficiency was associated with significantly reduced spatial learning as assessed by Morris water maze test. Here we investigated an effect of n-3 fatty acid deficiency on rat brain, retina and serum fatty acyl compositions at 15 wks age using a first generational artificial rearing technique. Newborn Rat pups were separated on day 2 and assigned to two artificial rearing groups or a dam-reared control group. Pups were hand fed artificial milk via custom-designed nursing bottles containing either 0.02%(n-3 Deficient) or 3.1% (n-3 Adequate) of total fatty acids as a-linolenic acid(LNA). At day 21, rats were weaned to either n-3 deficient or n-3 adequate pelleted diets and fatty acid compositions of brain, retina and liver were analyzed at 15 wks age. Brain docosahexaenoic acid(DHA) was lower(58% and 61%, P<0.05) in n-3 deficient in comparison to n-3 adequate and dam-reared groups, receptively, while brain docosapentaenoic acid(DPAn-6) was increased in the n-3 deficient group. In retina and serum fatty acid compositions, the decreased precentage of DHA and increased precentage of DPAn-6 were observed. These results suggested that artificial rearing method can be used to produce n-3 fatty acid deficiency in the first generation and that adequate brain DHA levels are required for optimal brain function.

The Effects of Complex Motor Training on Motor Function and Synaptic Plasticity After Neonatal Binge-like Alcohol Exposure in Rats (복합운동훈련이 신생 흰쥐의 알코올성 소뇌손상 후 운동기능 및 신경연접가소성에 미치는 영향)

  • Lee, Sun-Min;Koo, Hyun-Mo;Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.56-66
    • /
    • 2005
  • The purposes of this study were to test that complex motor training enhance motor function significantly, to test change in cerebellum, and to test the synaptic plasticity into the immunohistochemistry response of synaptophysin. Using an animal model of fetal alcohol syndrome - which equates peak blood alcohol concentrations across developmental period - the effects of alcohol on body weight during periods were examined. The effect of complex motor training on motor function and synaptic plasticity of rat exposed alcohol on postnatal days 4 through 10 were studied. Newborn rats were assigned to one of two groups: (1) normal group (NG), via artificial rearing to milk formula and (2) alcohol groups (AG), via 4.5 g/kg/day of ethanol in a milk solution. After completion of the treatments, the pups were fostered back to lactating dams, where they were raised in standard cages (two-and three animals per cage) until they were postnatal 48 days. Rats from alcohol group of postnatal treatment then spent 10 days in one of two groups: Alcohol-experimental group was had got complex motor training (learning traverse a set of 6 elevated obstacles) for 4 weeks. The alcohol-control group was not trained. Before consider replacing with "the experiment/study", (avoid using "got" in writing) the rats were examined during four behavioral tests and their body weights were measured, then their coronal sections were processed in rabbit polyclonal antibody synaptophysin. The synaptophysin expression in the cerebellar cortex was investigated using a light microscope. The results of this study were as follows: 1. The alcohol groups contained significantly higher alcohol concentrations than the normal group. 2. The alcohol groups had significantly lower body weights than the normal group. 3. In alcohol groups performed significantly lower than the normal group on the motor behavioral test. 4. In alcohol-control group showed significantly decreased immunohistochemistric response of the synaptophysin in the cerebellar cortex compared to the nomal group. These results suggest that improved motor function induced by complex motor training after postnatal exposure is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity. Also, these data can potentially serve as a model for therapeutic intervention.

  • PDF