• Title, Summary, Keyword: atmospheric re-entry

Search Result 13, Processing Time 0.03 seconds

Trajectory Control for Re-entry Vehicle (재진입비행체의 궤적제어)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.361-364
    • /
    • 1997
  • The re-enty guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of trajectory constraints. This reference drag acceleration profile can be considered as the reference trajectory. This paper proposes the atmospheric re-entry system which is composed of longitudinal, later and range control. This paper shows the a performance of a re-entry guidance and control system using feedback linearization control and predictive control.

  • PDF

Re-Entry Trajectory Tracking Via an Inverse Dynamics Method

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Hui Yan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1519-1528
    • /
    • 2004
  • Atmospheric Re-Entry guidance is divided as longitudinal and lateral. This paper proposes a longitudinal reference trajectory and control law using the inverse dynamics method with pseudospectral Legendre method. Application of this method into Re-Entry problem forces a power of calculation time-reduction due to unnecessary of integration or any iteration as well as sufficient accuracy convergence. The used guidance scheme is time-to-go.

Optimization Analysis of Trajectory for Re-Entry Vehicle Using Global Orthogonal Polynomial

  • Lee Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1557-1566
    • /
    • 2006
  • We present a procedure for the application of global orthogonal polynomial into an atmospheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of canonically parameterized optimal control problem. The optimal control problem is transcribed to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear optimization algorithm. We analyze the optimal trajectories with respect to the performance of re-entry maneuver.

A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Lee, Deok-Jin;Kim, Siwoo;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2017
  • The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

Evaluation of Performance of Atmospheric Re-Entry System for the Uncertainties Using the Monte-Carlo Simulation (몬테-칼로 모의실험을 이용한 대기권 재진입 시스템의 불확실성 성능 평가)

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.51-60
    • /
    • 2002
  • The Monte-Carlo simulation of statistical analysis is used to investigate the final conditions of states as well as the footprint boundaries resulting from the atmospheric re-entry dispersions. The re-entry dispersions in this paper are specified by a $7\times7$ covariance matrix of latitude, longitude, altitude, bank angle, flight path angle, heading error, and range at entry velocity. The error sources that affect these at re-entry for a deboost are the uncertainties associated with atmospheric density and temperature, initial errors, wind, and estimation error of aerodynamic coefficients. Using $3{\sigma}_n$ deviations of these errors and a nominal flight trajectory, the covariance matrix of state variables can be determined by performing a trajectory error analysis. Major considerations in the application of the Monte-Carlo method are the simulation of perturbed trajectories, bank reversal, and determination of the impact points for each of these trajectories. This paper analyzes the results of uncertainties from the viewpoint of aero-coefficients and bank reversal.

A Study on the trajectory prediction of the satellite re-entry in Korea (국내 위성추락 예측 연구)

  • Son, Ju-Young;Choi, Jin;Choi, Young-Jun;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Yim, Hong-Suh;Kim, Myung-Jin;Lim, Yeo-Myeong;Hyun, Sung-Kyung;Kim, Ji-Hye;Jo, Jung Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.142-149
    • /
    • 2013
  • As we, human expand its everyday life boundary to the geosynchronous orbit, we have experienced frequent chance of the atmospheric re-entry and surface impact of space objects(satellite and space debris). Recently a satellite re-entry monitoring room in Korea has been operated to predict the time and the location of the re-entry of space objects. However, we do not have a domestic version of a numerical re-entry model for normal operation using TLE (Two line Element) information from the United States Strategic Command yet. The space information from the several space operation centers has been used to analyse the re-entry situations. In this paper, the re-entry time is calculated with TLE based on the several atmosphere models, the result is comprehensively analyzed, a new re-entry case model fitted from the result of the predicted satellite re-entry times by a new Rubber Sheet Shift Method used by the domestic satellite re-entry room is suggested.

Design and Development Status of a Thermal Protection System for a Spaceplane (우주비행기 열보호 시스템의 설계 및 개발 현황)

  • Yoon, Yong-Sik;Choi, Gi-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2018
  • The demand for the development of atmospheric entry vehicles, dealing with reentry and solar-system planet exploration, is increasing. Generally, atmospheric drag and heating accompany the entry into atmospheric air. Accordingly, the selection of the thermal protection materials and the design and application of the thermal protection system are very important. In this paper, the atmospheric entry environment and the type and characteristics of the thermal protection materials are discussed. The design and application status of a thermal protection system for spaceplanes are described.

Operation of Official Satellite Re-entry Monitoring Room in Korea (국내 위성추락상황실 운영)

  • Jo, Jung Hyun;Choi, Young-Jun;Yim, Hong-Suh;Choi, Jin;Son, Ju-Young;Jeon, Hyun-Seock;Bae, Young-Ho;Moon, Hong-Kyu;Kim, Myung-Jin;Park, Jang-Hyun;Lim, Yeo-Myeong;Kim, Ji-Hye;Hyun, Sung-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.150-158
    • /
    • 2013
  • In Korea, the official monitoring of the atmospheric re-entry of satellites or space debris was initiated by the first operation of a re-entry situation analysis team for the 'Cosmos 1402' of the Soviet Union, which main body re-entered on January 23, 1983 and radio active core re-entered on February 7, 1983. After this incident, a task force team consisting Korea Astronomy and Space Science Institute (KASI), Korea Aerospace Research Institute (KARI) and other related institutes operated a situation monitoring group under the supervision of the Ministry of Science and technology (MOST) for the controlled re-entry of the Russian 'Mir' space station in 2001. The re-entry of the upper atmospheric weather satellite 'UARS' of United States had been monitored and analyzed by KASI on September 24, 2011. As the re-entry of the space object has been frequently occurred, the government officials and the experts from MEST (Ministry of Education, Science and Technology), KASI, KARI had an urgent official meeting to establish a satellite re-entry monitoring room in KASI and to give an operational authority to KASI in September 14, 2011. Under this decision, the satellite re-entry monitoring room in KASI has successfully executed the monitoring, data analyzing, official reporting, media contacting, and public announcing for the German satellite 'Roentgen' in October 2011, Russian space explorer 'Phobos-Grunt' in January 2012, Russian satellite 'Cosmos 1484' in January 2013, and European geodetic satellite 'GOCE' in November 2013 with the support from the Korean Air Force and KARI.

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.

Atmospheric Re-entry Guidance and Control of Space Launch Vehicle

  • 박수홍;왕종문
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.24 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • 본 논문은 우주 발사 비행체가 지구 재진입 할 때의 유도제어에 관한 것이다. 우주 발사 비행체의 재진입궤적은 재진입 할 때의 특징에 따라 여러 단계로 나누어진다. 저항가속도는 각 단계에 따라 알맞은 파라메터로 표현되며, 해석적인 저항가속도로 단순화된 궤적으로 표현한다. 본 연구는 현재의 이란적인 궤적방법과 예측방법의 각각의 장점에 의한 혼합유도방법을 표현하였다. 제안된 유도방법을 이용한 우주 발사 비행체의 재진입 모의실험의 결과는 혼합유도방법이 지구대기 재진입 할 때 간단하고 효과적인 유도방법임을 보여주었다.

  • PDF