• Title, Summary, Keyword: average hydrophobicity

Search Result 26, Processing Time 0.039 seconds

Effects of Amino Acid Composition and Average Hydrophobicity of Soybean Peptides on the Concentration of Serum Cholesterol in Rats (대두 펩타이드의 아미노산 조성 및 평균소수도가 흰쥐의 혈청 콜레스레롤 농도에 미치는 영향)

  • Han, Eung-Soo;Lee, Hyong-Joo;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.552-557
    • /
    • 1993
  • Effects of amino acid composition and average hydrophobicity of soybean peptides on serum cholesterol in rats were investigated. Soybean protein(ISP), casein(SCN), their peptic hydrolyzates fractionated by acid precipitations(SHT, SH8, SH6, SH4, CHT), and amino acid mixtures of the same composition as the proteins(SAA, CAA) were prepared to feed to rats. The amino acid composition of the peptides was analyzed by HPLC and the concentration of serum cholesterol in the rats was measured. By data analysis, it was found that there was no relationship between ratio of Lys/Arg or molar ratio of hydrophobic amino acids and serum cholesterol level. And also there was no relationship between the concentration and average hydrophobicity calculated by the method of Tanford, Manavalan, for Meirovitch, only except by the method of Krigbaum(r=-0.736); the higher the average hydrophobicity of Krigbaum was, the lower the concentration of serum cholestrol became.

  • PDF

Effect of chitosan-oligosaccharides on hydrophobicity of pathogenic Escherichia coli (Chitosan-oligosaccharides가 병원성 대장균의 소수성(疎水性)에 미치는 영향)

  • Choi, Hyun-sung;Han, Ho-jae;Kim, Hee-kyung;Kim, Hee-sun;Kang, Mun-il
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study was to evaluate effect of chitosan-oligosaccharides (CHIOL) on hydrophobicity of pathogenic E coli including a field isolate from suckling piglet with diarrhea, E coli-O157 : H7, and E coli-O149 : K88ac. E coli field isolate appeared adhesion of 100% to n-hexadecane between 0.00125% and 0.05% CHIOL. E coli-O157 : H7 occurred adhesion of 69% and 64% under the level of 0.00125% and 0.025% CHIOL, respectively. E coli-O149 : K88ac showed adhesion of 100% in higher than 0.025% CHIOL. For cationic action, the adhesion of E coli isolate and E coli-O149 : K88ac to n-hexadecane were inhibited at level of higher than 10mM $Ca^{2+}$ but did not induce any difference among the concentrations used(p < 0.01). However, the adhesion of E coli-O157 : H7 to n-hexadecane was inhibited at level of higher than 50mM $Ca^{2+}$. In a field trial, control piglets showed average mortality of up to 58% during 3 days after the onset of diarrhea. In contrast, the prevalence of E coli-induced diarrhea in CHIOL-treated groups without mortality was dropped down to average 34% on the 1st day after the treatment of CHIOL, and average 2% on the 4th day. After then, piglets with diarrhea was not present. In conclusion, the low concentrations of CHIOL were most likely to associate with the enhancement of hydrophobicity to pathogenic E coli. Calcium inhibited the hydrophobicity of E coli by CHIOL. These results suggested that CHIOL could be played an efficient and reliable role in treating enteric colibacillosis of piglets.

  • PDF

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K.;Nasehzadeh, A.;Ajloo, D.;Omidiyan, K.;Naghibi, H.;Mehrabi, M.;Khajehpour, H.;Rezaei-Tavirani, M.;Moosavi-Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1073-1077
    • /
    • 2002
  • Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

Characteristics of Bitter Peptides from a Cheese and a Soybean Paste (치즈 및 된장에서의 쓴 맛 펩타이드 특성)

  • Kim, Soo-Ho;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.276-282
    • /
    • 1985
  • To characterize bitter peptides in fermented protein foods, peptides were extracted with 2:1 (v/v) chloroform-methand from various samples and separated into fractions I, II, and III by Sephadex G-25 gel chromatography. Amino acid compositions of Mozzarella cheese, soybean paste, and each fraction from the two samples were analyzed to calculate the average hydrophobicity. All the solvent extracts of the food samples had strong bitter taste, although the original samples did not taste bitter. The yield of solvent extraction ranged from 0.08 to 62.50% of total nigrogen of food samples. The average hydrophobicity calculated from the amino acid composition of Mozzarella cheese was 1376 cal/mole, solvent extract 1,623 cal/mole, gel chromatography traction I, 1,797 cal/mole, fraction II, 2,454 cal/mole, and fraction III, 1,559 cal/mole. In the case of soybean paste, the average hydrophobicity of original sample, solvent extract, gel chromatography fraction I, II, and III wre 1,229, 1,654, 1,900,998 cal/mole, respectively. The important amino acids in bitter peptides were leucine, 2016, phenylalanine, proline, and voline.

  • PDF

Relation between Surface degradation and Anti-pollution Characteristics in RTV Silicone Rubber (RTV 실리콘 고무의 표면열화와 내오손 특성과의 상관관계)

  • 연복희;이태호;허창수;이상엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.598-606
    • /
    • 2000
  • In this paper we investigated the relation between the surface degradations and anti-pollution characteristics of Room Temperature Vulcanized(RTV) silicone rubber coating that has different roughness through immersing into saline water. We utilized several analytic techniques such as atomic force microscopy(AFM) scaning electron microscopy(SEM) contact angle Salt Deposit Density(SDD) and average leakage current under the condition of salt fog. It is found that the surface roughness of treated RTV silicone rubber increased and the hydrophobicity of sample surface decreased with increasing the duration o immersion into water due to the erosion of base polymer the melting down alumina trihydrate(ATH) and the diffusion of Low Molecular weight(LMW) fluid. Despite the roughness of surface had been increased by water immersion excellant anti-pollution and recovery characteristics were maintained and SDD saturated to 0.1~0.14mg/cm$^2$. The average leakage current under salt fog increased with surface roughness. Measurement of average leakage current will be helpful to investigate surface degradation and lifetime expectation of RTV silicone coating.

  • PDF

The change of surface degradation properties of silicone rubber for salt fog (염무-열 반복 열화에 따른 실리콘 고무의 표면열화특성변화)

  • Oh, Tae-Seung;Lee, Chung;Park, Soo-Gil;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.886-889
    • /
    • 2001
  • Silicone rubber is being used for the housing material of outdoor high voltage insulators such as composite insulator, bushing, surge arrestor and cable terminator because of good tracking and erosion resistance, good hydrophobicity and recovery of hydrophobicity and chemical stability. But, the leakge current occurs on surface of the composite polymeric insulation materials when the insulator is used for a long time with severe contaminative condition and it can lead the contamination flashover. So the leakage current is important to estimate the condition of the silicone rubber surface. In this paper, aging characteristics of silicone rubber used for outdoor insulation have been hydrophobicity of silicone rubber in salt fog chamber with average leakage current monitoring for observing the transformation of surface degradation properties of silicone rubber with different ATH(alumina trihydrate, A1$_2$O$_3$$.$3H$_2$O) filler contents. The experimental results show that a higher peak leakage current and to raise a long time for tracking with increasing amount of ATH by the salt fog and heat recycle ageing.

  • PDF

Isolation and Partial Physicochemical Characterization of Bile Acid-Binding Fraction from Rice Bran Protein Hydrolysates (미강 단백질 가수분해물에서 담즙산 결합 획분의 분리 및 특성구명)

  • Cho, Wan-Il;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.417-426
    • /
    • 1997
  • Rice bran protein hydrolysates were prepared and some of their physicochemical properties were investigated to utilize rice bran as starting material for functional food ingredient. Rice bran proteins (RBP) were prepared from defatted rice bran by alkaline extraction and isoelectric precipitation. The enzyme for hydrolysis of RBP was selected through measuring relative activity by pH-drop method and comparing the degree of hydrolysis (DH) of hydrolysates. The enzymatic hydrolysates prepared by $Esperase^{\circledR}$ treatment were partitioned into two fractions by ultrafiltration(UF) with a 10 kDa molecular weight cut-off membrane. Each fraction was applied to a cholic acid-conjugated ${\omega}-aminohexyl$ Sepharose 4B column and the bile acid-binding components were obtained by eluting with deoxycholate. Gel permeation chromatography on a Sephadex G-50 column revealed that molecular weight of the bile acid-binding fraction of UF permeate was distributed in ranges of $2\;kDa{\sim}10\;kDa$ and $0.2\;kDa{\sim}0.6\;kDa$. Three peaks (R-1, R-2 and R-3) were obtained by prep-HPLC of bile acid-binding fraction of UF retentate and analyzed for total and free amino acid composition. The results showed that proline content of the bile-acid binding polypeptides and peptides was four times as much as that of rice bran protein and that the peak corresponding to higher average hydrophobicity had a higher free amino acid content. Average hydrophobicity slightly increased with enzymatic hydrolysis.

  • PDF

Analysis of PVDF Coating Properties with Addition of Hydrophobically Modified Fumed Silica

  • Lee, Nam Kyu;Kim, Young Hoon;Im, Tae Gyu;Lee, Dong Uk;Shon, MinYoung;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.232-242
    • /
    • 2019
  • In this study, hydrophobically modified fumed silica was added to the PVDF coating to improve corrosion protection performance. Two types of silane modifiers, trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ), were used for hydrophobic modification of the fumed silica. The composition of modified fumed silica was analyzed by Fourier transform infrared, X-ray photoelectron spectroscopy, and elemental analysis. The dispersion of modified fumed silica in the PVDF coating was observed by the transmission electron microscopy, and the hydrophobicity of PVDF coating was analyzed by the water contact angle. Surface properties were examined by the field emission scanning electron microscopy and scanning probe microscopy. Potentiodynamic polarization was conducted to confirm corrosion protection performance of PVDF coating in terms of hydrophobically-modified fumed silica contents. As a result, the average surface roughness and the water contact angle of the PVDF coating increased with modifier contents. The results of the potentiodynamic polarization test showed an increase of the Ecorr values with increase of the hydrophobicity of PVDF coating. Thus, it clearly indicates that the corrosion protection performance of PVDF coating improved with the addition of the hydrophobic-modified fumed silica that prevents the penetration of moisture into the PVDF coating.

Effects of Average Molecular Weights, their Concentrations, Ca++ and Mg++ on Hydrophobicity of Solution of Na-Alginates Prepared from Sea Tangle Saccharina japonicus Produced in East Coast of Korea (평균분자량, 농도, 칼슘 및 마그네슘 이온이 동해안 다시마(Saccharina japonicus) Na-alginates의 소수성에 미치는 영향)

  • Lim, Yeong Seon;Yoo, Byung-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.542-548
    • /
    • 2018
  • We investigated the effects of Na-alginates's average molecular weight (AMW), their concentrations and divalent metal ions on hydrophobic interaction of solution of Na-alginates in sea tangle produced Saccharina japonicus in East Coast of Korea. As the AMWs of Na-alginates decreased, the formations rates of hydrophobic micro domains and pre-micelles between intermoleculars of Na-alginates were increased. The pre-micelles between Na-alginates chains fully were formed when their concentrations reached 0.2%. In the effects of $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ on the hydrophobicity of Na-alginates solution, when the AMWs of Na-alginates were increased, the formation rates of hydrophobic micro domains produced by $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ in alginates chains were increased. When $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ concentrations that were needed to form gels of alginates solutions were insufficient, the formations of pre-micelle in alginates having large AMW were more incomplete than those of small AMW. In the increasing range from 0.01 to 0.1 mM in divalent metal ion concentration, the formation rate of pre-micelle in alginates solution added $Ca^{{+}{+}}$ were more faster than that of $Mg^{{+}{+}}$.

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF