• Title, Summary, Keyword: bandpass filter

Search Result 555, Processing Time 0.038 seconds

Design of LTCC Bandpass Filter using Multilayer Resonators (적층 구조의 공진기를 이용한 LTCC 대역통과 여파기의 설계)

  • Seong Gyu Je;Yang Seung Hwan
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • /
    • pp.234-238
    • /
    • 2003
  • The LTCC bandpass filter using multilayer resonators is made of combline type and interdigital type parallel coupled-lines. The equivalent circuits of parallel coupled-lines are analysed. They are applied to make an equivalent circuit of LTCC bandpass filter using multilayer resonators. The 3-pole bandpass filter of the center frequency of 2.45GHz with 250Hz bandwidth is designed and fabricated. The simulated result of the bandpass filter are presented.

  • PDF

Equivalent Circuit Design of 2.4GHz Band LTCC Bandpass Filter (2.4GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • 성규제;양승환;김동연;유재하;여동훈
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.313-316
    • /
    • 2003
  • The LTCC bandpass filter using multilayer resonators is made of combline type and interdigital type parallel coupled-lines. The equivalent circuits of parallel coupled-lines are analysed. They are applied to make an equivalent circuit of LTCC bandpass filter using multilayer resonators. The 3-pole bandpass filter of the center frequency of 2.45GHz with 200Hz bandwidth is designed and fabricated. The simulated result of the bandpass filter are presented.

  • PDF

A Design of Varactor-Tuned Combline Bandpass Filter Using Coupling Varactor Diode

  • Kim Byung-Wook;Back Hyung-Il;Yun Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 2005
  • In this paper, a novel varactor-tuned combline bandpass filter is presented. The coupling varactor diode between line elements is introduced to control the passband bandwidth so that the passband bandwidth can be maintained almost constant within the tuning range. The equivalent circuit and design equations are derived, and the optimum design is discussed. A 1.7 GHz, two-pole bandpass filter with a bandwidth of $4.5\%$ was constructed. The absolute passband bandwidth was maintained almost constant within more than 0.4 octave tuning range.

A Compact Tunable Bandpass Filter Using Coupled Metamaterial Resonators with Varactor Diode

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • In this paper, we present a novel tunable microstrip bandpass filter based on split ring resonators (SRRs). The varactors are reverse-biased semiconductor diode, and are connected between the concentric rings of the SRR. An individual varactor loaded SRR based bandpass tunable filter module is analyzed. Then a second order tunable filter with 7% fractional bandwidth and a tuning range from 2.75 to 2.86 GHz is assembled from basic filter modules. The simulator HFSS (V10) is used to design the tunable filter and to simulate. The results show good characteristics is created.

A Coupled-Line Type Waveguide Bandpass Filter using Normalized Impedance Concept

  • Park, Jun-Seok;Kim, Young-Tae;Kim, Sun-Hyeong;Lim, Jae-Bong;Cho, Hong-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.126-132
    • /
    • 2003
  • In this paper, a coupled-line type waveguide bandpass filter is newly proposed. The proposed bandpass filter configuration consists of magnetically coupled waveguide cavities. In order to show the background of the proposed waveguide bandpass filter, the general coupled line TEM bandpass filter theory, which means the coupled line filter with arbitrary coupled line length and impedance level, will be briefly introduced. Calculations for the even- and odd-mode wave impedance of a coupled line waveguide structure are achieved based on the normalized impedance concept for a broad-side coupled waveguides by using vector finite element method(VFEM) calculation. Measured result of an implemented coupled-line type waveguide filter is presented.

An RF Amplitude Equalizer ; Improved Passband Flatness of a Bandpass Filter

  • Hwang, Hee-Yong;Jung, Jung-Seong;Yun, Sang-won
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.83-87
    • /
    • 2001
  • Many communication systems require bandpass filters with sharp skirt frequency characteristics in order to avoid the interferencce, which results in more order in the filter design. However, because of the limited Q values bandpass filters made of small sized ceramic resonators suffer from relatively large ripples at the band edges as the order of the filter increases. In order to compensate the large ripples while maintaining the sharp skirt frequency we propose a new RF amplitude equalizer. The equalizer made of two pole bandpass filter and an amplifier whose amplitude characteristics are the reverse of those of the bandapss filter. At the cellular band 9-pole bandpass filter with 10 MHz bandwidth exhibits 3 dB ripple when 8mm*8mm ceramic coaxial resonators are used. We added the RF equalizer to this filter and the flatness is improved as less than 1 dB.

  • PDF

Tunable Bandpass Filter with Varactors Based on the CRLH-TL Metamaterial Structure

  • Kim, Beom Kyu;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2013
  • This paper presents a tunable bandpass filter based on the varactor-loaded composite right- and left-handed transmission line (CRLH-TL). The proposed filter is composed of one CRLH-TL unit cell, which corresponds to the third-order bandpass filter. The tunable bandpass filter is designed using only lumped-elements. The use of lumped elements saves space and lowers the fabrication cost. The size of the proposed tunable bandpass filter is $17mm{\times}5mm$, neglecting the feed lines and DC lines. All of the varactors are controlled by one DC bias. The center frequency of the bandpass filter can be controlled by varying the value of the varactors. The tunable range of the center frequency is from 412.5 to 670 MHz. The insertion loss is less than 3 dB, the return loss is more than 10 dB in the passband.

Design and simulation of the DR ceramic bandpass filter for WLL(Wireless Local Loop) basestation (WLL(Wireless Local Loop) 기지국용 DR(Dielectric Resonator) 세라믹 대역통과 필터 설계와 시뮬레이션)

  • 김지균;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.315-318
    • /
    • 1999
  • The purpose of this study is to establish the design theory of a DR ceramic bandpass filter used for WLL basestations and to research on the design theory of bandpass filter. The design procedure is circuit parameters and structural parameters will be derived. It was observed that the filter characteristics at the simulations

  • PDF

A Miniaturized CMOS MMIC Bandpass Filter with Stable Center Frequency for 2GHz Application

  • Kang, In Ho;Guan, Xin
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.737-740
    • /
    • 2012
  • A miniaturized CMOS bandpass filter for a single RF transceiver system is presented, using diagonally end-shorted coupled lines and lumped capacitors. In contrast to conventional miniaturized coupled line filters, it is proven that the effective permittivity variation of the coupled transmission line has no effect on shifting the center frequency when the bandpass filter is highly miniaturized. A bandpass filter at a center frequency of 2 GHz was fabricated by $0.18{\mu}m$ CMOS technology. The insertion loss with the die area of $1500{\mu}m{\times}1000{\mu}m$ is -5.14 dB. Simulated results are well agreed with the easurements. It also verify the center frequency stability in the compact size bandpass filter.

Coplanar Waveguide Bandpass Filter Using the Folded-line Stepped- Impedance Restorator (접힌 스텝 임피던스 공진기를 이용한 CPW 대역 통과 여파기)

  • 이진택;이창언;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.620-625
    • /
    • 2003
  • The coplanar waveguide bandpass filter using folded-line stepped-impedance resonators(SIRs) is proposed. The folded-line SIR has about λ/8 length using the short-circuited end on coplanar waveguide. It make that the bandpass filter has the half size in comparison with general λ/4 SIR filter. In this paper, we derive the equivalent circuit and design the bandpass filter by using that. We design and fabricate the bandpass filter which has 5 GHz center frequency and 3 % fractional bandwidth. The measurement results fur 4-pole folded SIR bandpass filter agreed well with full-wave simulation and equivalent circuit results. The fabricated bandpass filter has a good spurious characteristic, which the harmonic frequency appeared at 2.5f$\_$0/). The proposed folded-line SIR bandpass filter are applicable for MMIC and High-Tc superconducting filters. bandwidth.