• Title, Summary, Keyword: bone ingrowth

Search Result 41, Processing Time 0.043 seconds

Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap

  • Mukherjee, Kaushik;Gupta, Sanjay
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.95-109
    • /
    • 2014
  • Peri-acetabular bone ingrowth plays a crucial role in long-term stability of press-fit acetabular cups. A poor bone ingrowth often results in increased cup migration, leading to aseptic loosening of the implant. The rate of peri-prosthetic bone formation is also affected by the polar gap that may be introduced during implantation. Applying a mechano-regulatory tissue differentiation algorithm on a two-dimensional plane strain microscale model, representing implant-bone interface, the objectives of the study are to gain an insight into the process of peri-prosthetic tissue differentiation and to investigate its relationship with implant-bone relative displacement and size of the polar gap. Implant-bone relative displacement was found to have a considerable influence on bone healing and peri-acetabular bone ingrowth. An increase in implant-bone relative displacement from $20{\mu}m$ to $100{\mu}m$ resulted in an increase in fibrous tissue formation from 22% to 60% and reduction in bone formation from 70% to 38% within the polar gap. The increase in fibrous tissue formation and subsequent decrease in bone formation leads to weakening of the implant-bone interface strength. In comparison, the effect of polar gap on bone healing and peri-acetabular bone ingrowth was less pronounced. Polar gap up to 5 mm was found to be progressively filled with bone under favourable implant-bone relative displacements of $20{\mu}m$ along tangential and $20{\mu}m$ along normal directions. However, the average Young's modulus of the newly formed tissue layer reduced from 2200 MPa to 1200 MPa with an increase in polar gap from 0.5 mm to 5 mm, suggesting the formation of a low strength tissue for increased polar gap. Based on this study, it may be concluded that a polar gap less than 0.5 mm seems favourable for an increase in strength of the implant-bone interface.

AN EXPERIMENTAL STUDY ON TISSUE RESPONSE FOLLOWING THE IMPLANTATION OF MEDPOR®(POROUS POLYETHYLENE) IN THE RATS (백서에서 Medpor® 매식후 조직반응에 관한 실험적 연구)

  • Kim, Su-Gwan;Yeo, Hwan-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 1998
  • $Medpor^{(R)}$(porous polyethylene) Surgical Implants are used for the augmentation or restoration of bony contour in craniofacial defects. The purpose of this study is to evaluate the ingrowth of soft tissue and bone after application in calvaria of rats. The experiment was carried out in 60 rats. The reflected periosteum was resutured after implantation of $Medpor^{(R)}$ as a experimental site, while in the calvarial bone the reflected periosteum resutured without implantation as a control site. The histologic examination was performed after 1-, 2-, 4-, 8-, 12-, 24-weeks implantation in calvaria of rats. I concluded that there was abundant ingrowth of soft tissue and bone without any adverse tissue response and that it shows good stability.

  • PDF

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible

  • Sosakul, Teerapan;Tuchpramuk, Pongsatorn;Suvannapruk, Waraporn;Srion, Autcharaporn;Rungroungdouyboon, Bunyong;Suwanprateeb, Jintamai
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.106-120
    • /
    • 2020
  • Purpose: A new form of porous polyethylene, characterized by higher porosity and pore interconnectivity, was developed for use as a tissue-integrated implant. This study evaluated the effectiveness of porous polyethylene blocks used as an onlay bone graft in rabbit mandible in terms of tissue reaction, bone ingrowth, fibrovascularization, and graft-bone interfacial integrity. Methods: Twelve New Zealand white rabbits were randomized into 3 treatment groups according to the study period (4, 12, or 24 weeks). Cylindrical specimens measuring 5 mm in diameter and 4.5 mm in thickness were placed directly on the body of the mandible without bone bed decortication, fixed in place with a titanium screw, and covered with a collagen membrane. Histologic and histomorphometric analyses were done using hematoxylin and eosin-stained bone slices. Interfacial shear strength was tested to quantify graft-bone interfacial integrity. Results: The porous polyethylene graft was observed to integrate with the mandibular bone and exhibited tissue-bridge connections. At all postoperative time points, it was noted that the host tissues had grown deep into the pores of the porous polyethylene in the direction from the interface to the center of the graft. Both fibrovascular tissue and bone were found within the pores, but most bone ingrowth was observed at the graft-mandibular bone interface. Bone ingrowth depth and interfacial shear strength were in the range of 2.76-3.89 mm and 1.11-1.43 MPa, respectively. No significant differences among post-implantation time points were found for tissue ingrowth percentage and interfacial shear strength (P>0.05). Conclusions: Within the limits of the study, the present study revealed that the new porous polyethylene did not provoke any adverse systemic reactions. The material promoted fibrovascularization and displayed osteoconductive and osteogenic properties within and outside the contact interface. Stable interfacial integration between the graft and bone also took place.

THE EVALUATION OF CYTOTOXICITY AND BIOCOMPATIBILITY OF TI-TA-NB-BASE ALLOY (Ti-Ta-Nb계 합금의 세포독성과 생체적합성의 평가)

  • Cui De-Zhe;Vang Mong-Sook;Yoon Taek-Rin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.250-263
    • /
    • 2006
  • Statement of problem: Ti-alloy has been used widely since it was produced in the United States in 1947 because it has high biocompatibility and anticorrosive characteristics. Purpose: The pure titanium, however, was used limitedly due to insufficient mechanical charateristics and difficult manufacturing process. Our previous study was focused on the development of a new titanium alloy. In the previous study we found that the Ti-Ta-Nb alloy had better mechanical characteristics and similar anticorrosive characteristics to Ti-6Al-4V Material and methods: In this study, the cytotoxicity of the Ti-Ta-Nb alloy was evaluated by MTT assay using MSCs(Mesenchaimal stem cells) and L929 cells(fibroblast cell line). The biocompatibility of the Ti-Ta-Nb alloy was performed by inserting the alloy into the femur of the rabbits and observing the radiological and histological changes surrounding the alloy implant. Results: 1. In the cytotoxicity test using MSCs, the 60% survival rate was observed in pure titanium, 84% in Ti-6Al-4V alloy and 95% in Ti-10Ta-10Nb alloy. 2. In the animal study, the serial follow-up of the radiographs showed no separation or migration revealing gradual bone ingrowth surrounding the implants. Similar radiographic results were obtained among three implant groups pure titanium, Ti-6Al-4V alloy and Ti-10Ta-10Nb alloy. 3. In the histologic examination of the bone block containing the implants. the bone ingrowth was prominent around the implants with the lapse of time. There was no signs of any tissue rejection, degeneration, or inflammation. Active bone ingrowth was observed around the implants. In the comparison of the three groups, the rate of bone ingrowth was better in the Ti-10Ta-10Nb alloy group than those in pure titanium group or Ti-6Al-4V alloy group. In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects. Conclusion: In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects.

Bone Ingrowth and Enhancement of Bone Bonding Strength at Interface between Bone and HA Coated Stainless Steel (HA 코팅된 스테인레스강과 뼈의 계면에서의 경조직 성장 및 결합력 향상)

  • Kim, C.S.;Kim, S.Y.;Kim, D.H.;Khang, G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.133-136
    • /
    • 1996
  • We investigated how hydroxyapatite (HA) coating onto a porous super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) affects bone ingrowth in a dog transcortical femoral model. Implants were histologically evaluated after 4 and 48 weeks of implantation, and the bone bonding strength at the bone/implant interface was examined by employing the pull-out test. The direct osseous tissue bonding onto the HA-coated S.S.S was observed, but the uncoated stainless steels had thin fibrous tissue layers. The mean interface strength of the HA-coated S.S.S was 1.5 and 2.5 times greater than those of the S.S.S and the 316L SS after one year of implantation, respectively. In preliminary studies, no toxic responce was observed from a cytotoxicity test of the S.S.S, having similar corrosion resistance to titanium. Our results suggest that early osteoconductive nature of HA coating may induce long term osteointegration for a bioinert substrate.

  • PDF

Evaluation of Fibrovascular Ingrowth into the Hydroxyapatite Ocular Implant by $^{99m}Tc$-MDP Bone Scintigraphy (골신티그라피에 의한 Hydroxyapatite 안구삽입물로의 섬유혈관증식 평가)

  • Bom, Hee-Seung;Song, Ho-Chun;Kim, Ji-Yeul;Jeong, Sang-Ki;Park, Young-Kul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.256-260
    • /
    • 1993
  • Thirteen patients received a coralline hydroxyapatite sphere as a buried integrated ocular implant after enucleation surgery. The implant was modified by multiple drillings, 1 mm in diameter, to the center of the sphere to allow more rapid host tissue ingrowth. $^{99m}Tc$-MDP planar and tomographic bone scintigraphies were performed at various intervals after implantation (from 100 to 742 days after operation) to assess vascularization of the implant. All patients showed hot uptakes in the implants. These patients underwent a secondary drilling for the final motility peg application. The confirmation of vascular ingrowth was done by inspection of bleeding at the time of bleeding at the time of drilling from the center of the implant. Bleeding from the drilled implant was noted in all patients. In cnclusion, hot uptake in the implanted ocular hydroxyapatite implant accurately reflect vascular ingrowth into the implant.

  • PDF

Finite Element Analysis of Stress Distribution around the Micro-Patterned Implants (마이크로패터닝을 부여한 임플란트 주변골에서의 하중 분포에 관한 유한요소분석법적 연구)

  • Hur, Bae-Young;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Implant requires long lasting, strong osseointegration using bio-mechanical interlocking by bone ingrowth. In regarding the size level for bone ingrowth, the micro-patterning would enhance bone response. Micro-patterning can increase the area contacting the bone tissues. Therefore, it may distribute the load to the surrounding bone tissue, more effectively. This study compared and analyzed the load distributing effect with the shape and number of micro-patterning. For the optimal comparison of threads, the assumptions different from general finite element analysis model were made. It was assumed that the implant was axisymmetric and infinitely long. The implant was assumed to be completely embedded in the infinitely long cortical bone and to have 100% bone apposition. The implant-bone interface had completely fixed boundary conditions and received an infinitely big axial load. The condition of threads were as follows. The reference model 1 had conventional thread. Model 2 had 2 micro-patterns on the upper flank of the thread. Model 3 had 2 micro-patterns on the lower flank of the thread. Model 4 had 2 micro-patterns on the upper and lower flanks of the thread. Model 5 had 3 micro patterns on the upper and lower flanks of the thread. The results were as follows: 1. The thread with micro-patterns distributed stress better than the conventional thread. 2. The thread with micro-patterns on the lower flank distributed stress better than that with micro-patterns on the upper flank. 3. The thread with 3 micro-patterns distributed stress better than that with 2 micro-patterns, However, an area with stress concentration occurred.

A Study on the Interface Micromotions of Cementless Artificial Hip Replacement by Three-Dimensional FEM (무시멘트형 인공고관절 대치술후 초기의 경계면 미세운동의 3차원 FEM 연구)

  • Kim, S.K.;Chae, S.W.;Choi, H.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.71-74
    • /
    • 1994
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony ingrowth and secondary long term fixation. Bone ingrowth depends strongly on relative micromotion and stress distributions at the interface. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone-prosthesis interface, Hence an accurate evaluation of interface behavior and stress/strain fields in the bone implant system may be relevant for better understanding of clinical situations and improving THA design. However, complete evaluation of load transfer in the bone remains difficult to assess experimentally, Hence, recently finite element method (FEM) was introduced in orthopaedic research field to fill the gap due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional numerical finite element model which is composed of totally 1179 elements off and 8 node blick. We also analyzed the micromotions at the bone-stem interface and mechanical behavior of existing bone prosthesis for a loading condition simulating the single leg stance. The result indicates that the values of relative motion for this well fit Multilock stem were $150{\mu}m$ in maximum, $82{\mu}m$ in minimum, and the largest relative motion developed in medial region of proximal femur with anterior-posterior direction. The proximal region of the bone was much larger in motion than the distal region and the stress pattern shows high stress concentration on the cortex near the tip of the stem. These findings indicates that the loading in the proximal femoral bone in the early postoperative situation can produce micromotions on the interface and clinically cementless TEA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF