• Title/Summary/Keyword: continuous runoff model

Search Result 4, Processing Time 0.136 seconds

Development of a Decision Support System for Reservoir Sizing

  • Kim, Seong-Joon;Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.17-23
    • /
    • 2000
  • A decision support system for determining reservoir capacity, named as KORESIDSS (KOwaco's REservoir SIzing Decision Support System), was developed. The system is composed of three subsystems; a database/information subsystem, a model subsystem, and an output subsystem. This system is operated using MS-Windows with a GUI (Graphic User Interface) system developed using Visual Basic 5.0. As a continuous runoff model, the DAWAST model (DAily WAtershed STreamflow model) developed by Noh(1991) was and its analysis module was developed. This system was applied to a newly-planned dam, the Cheongyan Dam, Which will be located in Cheongyang-Gun, Chungcheongnam-Do and it was proved to be applicable in determining reservoir storage.

  • PDF

Application of Continuous Runoff Model During Low Flow (이수기 연속유출모형의 적용)

  • Maeng, Seung-Jin;Koh, Deok-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.283-286
    • /
    • 2007
  • 현재까지 이수관리를 목적으로 저수지 또는 저수지군의 최적(연계)운영모형 개발에 관한 연구들을 다수 수행한 바 있는데 그 예를 들면, 한강, 금강, 낙동강 수계에서 Hydro-scheduling 모형과 CoMOM(Coordinated Multi- reservoir Operating Model for Han River Basin)을 적용하였고 특히 낙동강 수계에 대해서는 저수관리시스템을 개발하여 적용하였다. 그러나 이러한 적용 사례에도 불구하고 이수 물관리의 근간이 되는 수계 저수유출을 모의할 수 있는 모형은 정립되어 있지 못한 실정이다. 본 연구에서는 수계별 한정된 수자원의 효율적 관리를 위한 기존댐의 연계운영과 병행하여 댐 상 ${\cdot}$ 하류 유출을 고려한 종합적인 수자원관리방안 수립의 필요성이 대두됨에 따라, 저수기 램 상 ${\cdot}$ 하류의 수계 주요지점에 대한 하천유출상황을 모의할 수 있는 모형을 개발하였다.

  • PDF

Runoff Analysis on the Physically-Based Conceptual Time-Continuous Runoff Model (물리적.개념적 연속 유출모형에 의한 유출해석)

  • 배덕효;조원철
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.193-202
    • /
    • 1995
  • The subjective research attempts to apply a rainfall-runoff model capable of considering time-variation of soil water contents which are highly correlated to the river flows on the qpqyungchang river basin and to evaluate its performance for flow forecasting. The model used in this study is a physically-based conceptual time-continuous model, which is composed of the Sacramento soil moisture accounting model and the nonlinear multiple conceptual reservoirs model. The daily precipitation and evaporation data for 7 years and for 3 years were used for the parameter estimation and the model verification, respectively. As a result, the flows including a significant flood event were well simulated, and the cross-correlation coefficient between observed flows and computed flows for the verification periods was 0.87, but in general computed flows were underestimated for the low-flow periods. Also, the effects of precipitation and soil water content to the river flows were analysed for the flood and the drought.

  • PDF