• Title, Summary, Keyword: curing time

Search Result 1,038, Processing Time 0.064 seconds

Study on the Curing Safety of Thermosetting Resin Mold Meterial (열경화성수지 성형재료의 경화 안전성에 관한 연구)

  • 최일곤;최재욱;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 1997
  • In this paper, it was described results of study on curing safety of molding meterial, about the variation of phenol resin contents, wood flour contents and moisture of wood flour, under the same condition. The experimental results are summarized as follows ; 1) When the curing temperature was high, the curing time was short in the case of 4~8wt% moisture of wood flour, but in the case of more than l2wt% moisture of wood flour, the curing time was long. 2) The curing time for curing temperature was more short when 6wt% moisture of wood flour than 4wt% moisture of wood flour. 3) The more wood flour content and moisture of wood flour content, the longer curing time and the more mineral filler content, the shorter curing time. 4) When the phenol resin content of main matrix increase, the curing time was short.

  • PDF

Research for The Comparing Test of the Fracture Strength According to the Heat Curing Method in the Denture Base Resin (의치상용 열중합 레진의 Curing방법에 따른 파절 강도의 비교실험연구)

  • Han, Min-Soo
    • The Journal of Korean Academy of Dental Technology
    • /
    • v.23 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • For this study, self curing resin and heat curing resin used for existing usual resin denture base in the denture industry were chosen by manufacturer. Curing tests for 30-minute, I-hour, 2-hour and 3-hour were conducted to know the strength of the resins and conduct analysis to get other necessary information. The results obtained are as follows: 1. Heat curing resins show a little differences among the manufacturers. However 30-minute curing resin shows great difference as shown in the fracture strength test. 2. The effect from the granularity of the resins on the fracture strength was found insignificant which means there is no difference between coherence and strength. 3. To summarize the results from each time level, the longer the time is, the more the minute cracks on the surface, which is the cause of reduced strength. From this test, it was identified that in making the denture base for patients in dental clinics, 30-minute curing is most efficient and effective in reducing discoloration and monomers, although long-time curing has been considered to be the principal.

  • PDF

An Experimental Study on the Design-Concrete for Precast Concrete (문양 콘크리트의 프리캐스트화를 위한 실험적 연구)

  • Kim Jae-Eun;Gong Min Ho;Kim Kwang Ki;Cho Sang-Young;Jung Jae Young;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.11-14
    • /
    • 2004
  • The object of this study is vibrating compaction and curing method in the production process of Design concrete for precast concrete(Design-PC) product. From change of vibrating compaction time and pre-curing time. curing temperature which would be factors of product quality in Design-PC concrete production. and research of optimized steam curing condition from relations between curing condition and strength development. basic data of vibrating compaction time and concrete steam curing method for Design-PC will be presented.

  • PDF

A Study on the Optimization of Curing Technology for Improving Properties of Concrete Pavement (콘크리트 포장의 내구성 향상을 위한 양생제 시공기술 최적화 연구)

  • Park, KwonJea;Ryu, SungWoo;Kim, HyungBae;Joo, YoungMin;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to suggest time to spray curing compound, the amount of curing compound, and the number of times to spray curing compound based on indoor tests. METHODS : Based on the literature review, two methods are used in this study, One is test for water retention of concrete curing material and the other is test for abrasion resistance of concrete surfaces by the rotating-cutter method. Through those methods, curing compound was evaluated. RESULTS : The result of the laboratory experiment for time to spray curing compound indicates that 30 minutes after placing concrete is optimal. For the amount of curing compound, $0.5{\ell}/m^2$ is the minimum quantity for both concretes. Through test of the number of times to spray curing compound, method to spray the whole amount of curing compound in twice is more efficient than it to spray the whole amount at a time. Also, method of separately 30-50 minutes spray is better than method of separately 10-30 minutes spray. CONCLUSIONS : From the testing results, it can be proposed that optimum time to curing compound is $30{\pm}15$ minutes, $0.5{\ell}/m^2$ is efficient for spraying the whole amount of curing compound at a time, and $0.4{\ell}/m^2$ is the best for spraying the whole amount of curing compound in twice, which sprays it in 20 minutes after 30 minutes from placing concrete.

Curing Kinetics of TDI/PTMEG-based Urethane Prepolymers Depending on the Amount of Curing Agent and Curing Temperatures by DSC and Real Time FT-IR Spectroscopy

  • Kim, Se Mi;Park, Hee Jung;Kim, Seon Hong;Lee, Eun Ju;Lee, Kee Yoon
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.266-271
    • /
    • 2017
  • This study describes the influence of the amount of curing agent and curing temperature on the kinetics of polyurethane elastomers. The urethane prepolymer series was prepared by reacting toluene diisocyanate with polytetramethylene ether glycol at $80^{\circ}C$ for 1 h, and 4,4'-methylene bis(2-chloroaniline) was used as the curing agent. The ratio of the amine group of the curing agent to the isocyanate group of the urethane prepolymer was controlled from 0.85 to 1.05 at curing temperatures ranging from 80 to $120^{\circ}C$. The curing rate of the urethane prepolymer was monitored by observing the change in heat flow during the curing process using differential scanning calorimetry (DSC). As either the content of curing agent or the curing temperature was higher, the conversion rate to the polyurethane elastomer was high. The DSC results were compared with those obtained from using real-time FT-IR.

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Micro-morphological Features of Liquid Urea-Formaldehyde Resins during Curing Process at Different Levels of Hardener and Curing Time Assessed by Transmission Electron Microscopy

  • Nuryawan, Arif;Park, Byung-Dae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This study used transmission electron microscopy (TEM) to investigate the micro-morphological features of two formaldehyde to urea (F/U) mole ratio liquid urea-formaldehyde (UF) resins with three hardener levels as a function of the curing time. The micro-morphological features of the liquid UF resins were characterized after different curing times. As a result, the TEM examination revealed the presence of globular/nodular structures in both liquid UF resins, while spherical particles were only visible in the low F/U mole ratio resins. The high F/U mole ratio liquid UF resins also showed extensive particle coalescence after adding the hardener, along with the appearance of complex filamentous networks. When the resins were cured with a higher amount of hardener and longer curing time, the spherical particles disappeared. For the low mole UF resins, the particles tended to coalesce with a higher amount of hardener and longer curing time, although discrete spherical particles were still observed in some regions. This is the first report on the distinct features of the crystal structures in low F/U mole ratio UF resins cured with 5% hardener and after 0.5 h of curing time. In conclusion, the present results indicate that the crystal structures of low F/U mole ratio UF resins are formed during the curing process.

Setting Time and Strength of Slip-form Method Applied Caisson in Low-temperature Period (슬립폼공법 적용된 동절기 케이슨의 온도에 따른 응결시간 및 압축강도)

  • Kim, Bong-Joo;Kim, Jae-Hun;Kim, Chan-Soo;Jo, Ho-Kyoo
    • Journal of Korean Society of Hazard Mitigation
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In the harbor construction work, caisson is made by slip-form method and curing temperature of caisson concrete need heating in the low-temperature. To get the setting time and compression strength of slip-form method applied caisson at various curing temperature. The curing temperature is divided to the temperature of slip-form and the temperature of second curing curtain. In consideration of setting time, compression strength of concrete and form-removal time, the best temperature is $25^{\circ}C$ at 6 hours slip-form curing time.

Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments) (아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF