• Title, Summary, Keyword: delay differential equations

Search Result 66, Processing Time 0.026 seconds

MEAN SQUARE EXPONENTIAL DISSIPATIVITY OF SINGULARLY PERTURBED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

  • Xu, Liguang;Ma, Zhixia;Hu, Hongxiao
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.205-212
    • /
    • 2014
  • This paper investigates mean square exponential dissipativity of singularly perturbed stochastic delay differential equations. The L-operator delay differential inequality and stochastic analysis technique are used to establish sufficient conditions ensuring the mean square exponential dissipativity of singularly perturbed stochastic delay differential equations for sufficiently small ${\varepsilon}$ > 0. An example is presented to illustrate the efficiency of the obtained results.

INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF BACKWARD STOCHASTIC DELAY DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Liang, Hong;Zhou, Jianjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.311-330
    • /
    • 2020
  • This paper investigates infinite horizon optimal control problems driven by a class of backward stochastic delay differential equations in Hilbert spaces. We first obtain a prior estimate for the solutions of state equations, by which the existence and uniqueness results are proved. Meanwhile, necessary and sufficient conditions for optimal control problems on an infinite horizon are derived by introducing time-advanced stochastic differential equations as adjoint equations. Finally, the theoretical results are applied to a linear-quadratic control problem.

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

STABILITY FOR INTEGRO-DELAY-DIFFERENTIAL EQUATIONS

  • Goo, Yoon-Hoe;Ryu, Hyun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • We will investigate some properties of integro-delay-differential equations, $$x^{\prime}(t)=A(t)x(t-g_1(t,x_t))+{\int}_{t_0}^{t}B(t,s)x(s-g_2(s,x_s))ds,\;t_0{\geq}0,\\x(t_0)={\phi}$$,

  • PDF

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

CONTROLLABILITY OF SECOND-ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

  • Arthi, Ganesan;Balachandran, Krishnan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1271-1290
    • /
    • 2011
  • The purpose of this paper is to investigate the controllability of certain types of second order nonlinear impulsive systems with statedependent delay. Sufficient conditions are formulated and the results are established by using a fixed point approach and the cosine function theory Finally examples are presented to illustrate the theory.

PERIODIC SOLUTIONS OF STOCHASTIC DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS TO LOGISTIC EQUATION AND NEURAL NETWORKS

  • Li, Dingshi;Xu, Daoyi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1165-1181
    • /
    • 2013
  • In this paper, we consider a class of periodic It$\hat{o}$ stochastic delay differential equations by using the properties of periodic Markov processes, and some sufficient conditions for the existence of periodic solution of the delay equations are given. These existence theorems improve the results obtained by It$\hat{o}$ et al. [6], Bainov et al. [1] and Xu et al. [15]. As applications, we study the existence of periodic solution of periodic stochastic logistic equation and periodic stochastic neural networks with infinite delays, respectively. The theorem for the existence of periodic solution of periodic stochastic logistic equation improve the result obtained by Jiang et al. [7].

BOUNDED OSCILLATION FOR SECOND-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

  • Song, Xia;Zhang, Quanxin
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.447-454
    • /
    • 2014
  • Two necessary and sufficient conditions for the oscillation of the bounded solutions of the second-order nonlinear delay differential equation $$(a(t)x^{\prime}(t))^{\prime}+q(t)f(x[{\tau}(t)])=0$$ are obtained by constructing the sequence of functions and using inequality technique.

FINITE DIFFERENCE SCHEME FOR SINGULARLY PERTURBED SYSTEM OF DELAY DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • SEKAR, E.;TAMILSELVAN, A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.201-215
    • /
    • 2018
  • In this paper we consider a class of singularly perturbed system of delay differential equations of convection diffusion type with integral boundary conditions. A finite difference scheme on an appropriate piecewise Shishkin type mesh is suggested to solve the problem. We prove that the method is of almost first order convergent. An error estimate is derived in the discrete maximum norm. Numerical experiments support our theoretical results.