• Title, Summary, Keyword: dissipative Kirchhoff equation

Search Result 1, Processing Time 0.021 seconds

ON SOLVABILITY OF THE DISSIPATIVE KIRCHHOFF EQUATION WITH NONLINEAR BOUNDARY DAMPING

  • Zhang, Zai-Yun;Huang, Jian-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-206
    • /
    • 2014
  • In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation $$u_{tt}-M({\parallel}{\nabla}u{\parallel}^2){\triangle}u+{\alpha}u_t+f(u)=0\;in\;{\Omega}{\times}[0,{\infty}),\\u(x,t)=0\;on\;{\Gamma}_1{\times}[0,{\infty}),\\{\frac{{\partial}u}{\partial{\nu}}}+g(u_t)=0\;on\;{\Gamma}_0{\times}[0,{\infty}),\\u(x,0)=u_0,u_t(x,0)=u_1\;in\;{\Omega}$$ with nonlinear boundary damping by Galerkin approximation benefited from the ideas of Zhang et al. [33]. Furthermore,we overcome some difficulties due to the presence of nonlinear terms $M({\parallel}{\nabla}u{\parallel}^2)$ and $g(u_t)$ by introducing a new variables and we can transform the boundary value problem into an equivalent one with zero initial data by argument of compacity and monotonicity.