• Title/Summary/Keyword: dual-band antenna

Search Result 87, Processing Time 0.099 seconds

Design of Dual Band Antenna by EMC Feeding Structure

  • Jeon, Joo-Seong
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • In this paper, the wideband microstrip antennas for the PCS & IMT-200O dual band are studied. Experimental and simulation results on the dual band antenna are presented. Simulation results are in good agreement with measurements. The experimental and simulation results confirm the wideband characteristics of the antenna. The studied antenna satisfies the wideband characteristics that are required characteristics for above 420 MHz impedance bandwidth for the PCS & IMT-2OO0 dual band antenna. In this paper, through the designing of a dual band antenna, we have presented the availability for PCS & IMT-20O0 base station antenna.

  • PDF

Design and Implementation of 2.4 ㎓ and 5 ㎓ Dual Band Antenna for Access Point of Wireless LAN (무선 LAN 엑세스 포인트용 2.4 GHz, 5 GHz 이중공진 안테나의 설계 및 구현)

  • 김창일;오종대;양운근;김성민
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.304-311
    • /
    • 2003
  • In this paper, we present the 2.4 ㎓ and 5 ㎓ dual band antenna fur access point of WLAN(Wireless Local Area Network). The proposed antenna must have equal gains in both frequency bands to accept two services. We proposed using collinear array to compensate gain difference for two different frequency bands. Simulation results using 3D simulation program, CST MWS(Microwave Studio), for dual band antenna with collinear away show that the maximum gain is about 4.7 dBi at 2.4 ㎓, 5.2 dBi at 5.7 ㎓. We got additional gain of about 2.1 ㏈ with collinear array for 2.4 ㎓ in measurement. Measured results for the dual band antenna with collinear array show applicable performances for access point of wireless LAN.

Broadband Microstrip Patch Antenna

  • Lee Ho-Jun;Lee Jae-Young;Kim Jong-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • /
    • pp.230-233
    • /
    • 2003
  • In this paper, the wideband microstrip patch antennas for the Personal communications Service $(PCS\;:\;1750\~1870\;MHz)$ and International Mobile Telecommunications-2000 $(IMT-2000\;:\;1920\~2170\;MHz)$ dual band are studied. Experimental and simulation results on the dual band antenna are presented. Simulation results are in good agreement with measurements. The experimental and simulation results confirm the wideband characteristics of the antenna. The studied antenna satisfied the wideband characteristics that are required characteristics for above 420 MHz impedance bandwidth for the PCS and IMT-2000 dual band antenna. In this paper, through the designing of a dual band antenna, we have presented the availability for PCS & IMT-2000 base station antenna. An impedance bandwidth of $31\%(VSWR<1.5,\;615\;MHz)$ and a maximum gain of 7dBi can be achieved. The radiation pattern is stable across the passband.

  • PDF

The Optimal Design of a Triple-Band Antenna with Additional Arm Resonating Structure for LTE, ISM and WLAN Application (LTE, ISM, WLAN에 적용 가능한 Arm 구조 삼중대역 안테나 최적 설계)

  • Lee, Seung-Je;Oh, Seung-Hun;Lee, Jeong-Hyeok;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1655-1660
    • /
    • 2014
  • In this paper, we propose a design of a triple-band microstrip circular patch antenna. The proposed antenna generates the triple frequency resonance at 1.85GHz(LTE), 2.45GHz(ISM) and 5.5GHz(WLAN). Firstly, we design the dual-band antenna. The dual-band antenna consist of the circular patch, slits, and the slot. The circular patch and slot are designed for dual frequency of 2.45GHz and 5.5GHz, respectively. And then the dual-band antenna is combined with additional arm-shaped structure for the triple-band characteristic. The arm-shaped structure is operated as the dipole. It is designed for lowest frequency of 1.85GHz. Each part of the antenna unites to a new structure. In order to design the proposed antenna automatically and optimally, APSO algorithm is adopted. During APSO, the mismatch of the proposed antenna is resolved. The optimal designed antenna has an acceptable return loss(-10dB) at each bands(i.e, 1.85GHz, 2.45GHz and 5.5GHz).

Broadband Microstrip Patch Antenna Design (광대역 마이크로스트립 패치 안테나 설계)

  • 이호준;이재영;김종규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • In this paper, the wideband microstrip patch antennas for the Personal communications Service (PCS : 1750∼1870 MHz) and International Mobile Telecommunications-2000 (IMT-2000 : 1920∼2170 MHz) dual band are studied. Experimental and simulation results on the dual band antenna are presented. Simulation results are in good agreement with measurements. The experimental and simulation results confirm the wideband characteristics of the antenna. The studied antenna satisfied the wideband characteristics that are required characteristics for above 420 MHz impedance bandwidth for the PCS and IMT-2000 dual band antenna. In this paper, through the designing of a dual band antenna, we have presented the availability for PCS & IMT-2000 base station antenna. An impedance bandwidth of 33% (VSWR<1.5, 650 GHz) and a maximum gain of 7dB can be achieved. The radiation pattern is stable across the passband.

  • PDF

Design of Miniaturized Dual-Band Artificial Magnetic Conductor with Easy Control of Second/First Resonant Frequency Ratio

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.104-112
    • /
    • 2013
  • A novel miniaturized artificial magnetic conductor (AMC) is proposed for dual-band operation. An AMC unit cell that employs four slots in the metallic patch is used to achieve miniaturization as well as easy control of the second/first resonant frequency ratio, which can be varied from 1.5 to 3.26 by simply changing the slot shape for a given metallic patch size. A dual-band antenna composed of a wideband monopole suspended over the proposed AMC surface is designed and tested to validate this approach. The measurements result in a satisfactory and good matching condition for the dual-band antenna.

Miniaturization of a CPW-fed Dual-Band Antenna for GSM 1800/1900 and WLAN 5 GHz Applications

  • Borah, Janmoni;Sheikh, Tasher Ali;Roy, Sahadev
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.119-123
    • /
    • 2017
  • This paper presents a unique and miniaturized dual-band coplanar waveguide (CPW-fed) antenna for modern wireless communication. A new technique of using a modified ground structure (MGS) and frequency shifting strips (FSS) has been employed in the design to achieve dual-frequency operation. The proposed antenna generates two separate impedance bandwidths and covers the minimum required frequency bands of GSM 1800, GSM 1900, and Wi-Fi/WLAN 5 GHz. The proposed antenna is relatively small ($17{\times}20mm^2$) and operates over frequency ranges 1.51~2.06 and 4.43~6.70 GHz. The designed antenna was simulated using Ansoft HFSS, a FEM based simulator, and antenna characteristics, such as reflection coefficient, gain, radiation efficiency, radiation pattern, impedance bandwidth, VSWR, surface current, and electric field distributions, are reported in this paper. The effect of the antenna's key structural parameters on its performance is also analyzed.

Design and Implementation of Dual Band Antenna for IMT-2000 and 5.7㎓ Wireless Local Area Network (IMT-2000/5.7㎓ 무선 LNA용 이중공진 안테나의 설계 및 구현)

  • 김창일;김주성;공성신;양운근
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • /
    • pp.237-240
    • /
    • 2002
  • In this paper, we designed and implemented the dual band antenna for IMT-2000 and 5.7㎓ WLAN(Wireless Local Area Network). The antenna was designed by using 3D simulations program, HFSS(High Frequency Structure Simulator). The electrical characteristics were measured by using HP 8720C network analyzer and measured maximum S$\sub$11/ was -25㏈, and maximum VSWR(Voltage Standing Wavc Ratio) was 1.26 for all frequency bands of interests in IMT-2000 and 5.7㎓ WLAN. Simulation results for antenna gain at 2㎓ and 5.7㎓ were 1.31㏈i and 4.1㏈i with omni directional radiation pattern. Implemented antenna is compact sized and can be produced in low cost enough for commercialization.

  • PDF

A study on an optimal design for a dual-band patch antenna with a shorting pin using the evolution strategy (진화 알고리즘을 이용한 단락핀이 있는 이중대역 패치 안테나 최적 설계 연구)

  • Ko, Jae-Hyeong;Kwon, So-Hyun;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • /
    • pp.221-224
    • /
    • 2009
  • In this paper, we deal with the development of an optimal design program for a dual-band of 0.92 GHz and 2.45 GHz with shorting pin and slot by using evolution strategy. the optimal shorting pin, coaxial feed and H-shaped patch are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The resonance frequencies of the dual-band antenna yielded by the optimal design program are 0.92 GHz and 2.45 GHz that show a good agreement to the design target values.

  • PDF

Dual-Band Antenna Design for LTE/Wi-Fi for Maritime Broadband Communication (해상 광대역 통신을 위한 LTE/Wi-Fi용 이중대역 안테나 설계)

  • Oh, Mal-Geun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.665-669
    • /
    • 2018
  • In this paper, we design an antenna for LTE / Wi-Fi communication that operates in 2.65 GHz and 5 GHz band for small-sized broadband communication antenna that can be used in the sea. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. In addition, we designed a microstrip antenna using CST Microwave Studio 2014 program that can design 3D. Simulation results show that the reflection lossis -12.712 dB at 2.65 GHz and -16.583 dB at 5 GHz. The gain was 1.738 dBi at 2.65 GHz and 3.284 dBi at 5 GHz. In this paper, we propose a dual-band antenna for LTE / Wi-Fi, which can be used in maritime environments, which is worse than terrestrial communication, because of differences in communication speed and communication stability compared with those used on land.