• Title, Summary, Keyword: electrodeposition

Search Result 510, Processing Time 0.043 seconds

Selective Electrodeposition Using Laser Masking and DC Voltage (레이저 마스킹과 직류전원을 이용한 선택적 전해도금)

  • Shin, Hong Shik;Kim, Sung Yong
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • This paper proposes a selective electrodeposition process that uses laser masking and a DC voltage. Selective electrodeposition using laser masking and a DC voltage is more efficient than that using laser masking and a pulse voltage. In other words, electrodeposition with a DC voltage allows for precise selective deposition without the limitation of the deposition region. Also, a selective electrodeposition method that uses laser masking and DC voltage can reduce the electrodeposition time. The characteristics of a copper layer deposited by laser masking and DC voltage were examined under various conditions. A selective copper layer with various micro patterns of $2{\mu}m$ thickness was successfully fabricated.

Improvement of Reproducibility in Selective Electrodeposition Using Laser Masking and DC Voltage (레이저 마스킹과 직류전원을 이용한 선택적 전해도금의 재현성 개선)

  • Shin, Hong Shik
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • A method is proposed for the improvement of deposition reproducibility in the selective electrodeposition process using laser masking and DC voltage. Selective electrodeposition using laser masking and DC voltage can achieve a deposited layer with micro patterns. However, selective electrodeposition using laser masking and DC voltage have a critical problem: the lack of reproducibility in selective deposition. The reproducibility of selective electrodeposition can be improved by a new process that consists of laser masking, two-step electro-deposition, laser scribing, and ultrasonic cleaning. The experiments in this study show that the reproducibility of selective deposition can be successfully improved by the combination of two-step electrodeposition and laser scribing.

Analysis of Initial Stage of Copper Electrodeposition for Fine Pattern (미세패턴용 구리도금시 초기 전착 거동 해석)

  • 조차제;최창희;김상겸;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.164-168
    • /
    • 2003
  • The initial stage of copper electrodeposition has been known to be very important role for morphology and physical properties after final growth. The factors affecting the nucleation are electrode, current density, electrolyte and temperature. Current studies has illuminated the initial nucleation of copper electrodeposition in the viewpoint of the surface status of electrode and analyzed using EIS and SEM observation

Fabrication and Properties of Fe-Ni Nano Thin Film and Wire by Electrodeposition Method (Electrodeposition법에 의한 Fe-Ni 나노박막 및 나노선 제조 및 특성)

  • Koo, Bon-Keup;Shin, Dong-Yul;Jung, Woo-Ram;Jung, Sang-Ok;Kim, Dae-Yong;Choi, Mok-Ryeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.557-558
    • /
    • 2006
  • The mechanical properties of micro-hardness and internal stress of Ni-Fe alloy thin film made by electrodeposition method have been measured as a function of bath composition and current density. And also the microstructure of $200{\AA}$ Ni-Fi nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method have been observed by SEM as a function of ultrasonic treatment time and bath composition.

  • PDF

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Electrochemical Properties of Polyaniline Electrodes Prepared by Chemical Synthesis and Electrodeposition: Revisited with High-Scan-Rate Behaviors

  • Nam, Ji Hyun;Woo, Cho Hyeon;Kim, Kwang Man;Ryu, Kwang Sun;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.80-84
    • /
    • 2012
  • The polyaniline (PANI) electrodes are prepared by chemical synthesis and electrodeposition methods and their supercapacitive properties are characterized and compared by morphology observation, cyclic voltammetry as a function of scan rate, and impedance spectra analysis. In particular, the supercapacitive properties obtained in the range of higher potential scan rates (e.g., over $200mV\;s^{-1}$) are emphasized to be capable of utilizing adequately the high power capability of supercapacitor. As a result, the PANI electrode by the electrodeposition shows superior specific capacitance (max. $474F\;g^{-1}$ at $10mV\;s^{-1}$ and about $390F\;g^{-1}$ at $500mV\;s^{-1}$) than those by the chemical synthesis method. This is mainly due to highly porous structure obtained by the electrodeposition to yield higher specific surface area.

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

Interconnection Processes Using Cu Vias for MEMS Sensor Packages (Cu 비아를 이용한 MEMS 센서의 스택 패키지용 Interconnection 공정)

  • Park, S.H.;Oh, T.S.;Eum, Y.S.;Moon, J.T.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.63-69
    • /
    • 2007
  • We investigated interconnection processes using Cu vias for MEMS sensor packages. Ag paste layer was formed on a glass substrate and used as a seed layer for electrodeposition of Cu vias after bonding a Si substrate with through-via holes. With applying electrodeposition current densities of $20mA/cm^2\;and\;30mA/cm^2$ at direct current mode to the Ag paste seed-layer, Cu vias of $200{\mu}m$ diameter and $350{\mu}m$ depth were formed successfully without electrodeposition defects. Interconnection processes for MEMS sensor packages could be accomplished with Ti/Cu/Ti line formation, Au pad electrodeposition, Sn solder electrodeposition and reflow process on the Si substrate where Cu vias were formed by Cu electrodeposition into through-via holes.

  • PDF

Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices (반도체 소자용 구리 배선 형성을 위한 전해 도금)

  • Kim, Myung Jun;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.26-39
    • /
    • 2014
  • Cu interconnection in electronic devices is fabricated via damascene process including Cu electrodeposition. In this review, Cu electrodeposition and superfilling for fabricating Cu interconnection are introduced. Superfilling results from the influences of organic additives in the electrolyte for Cu electrodeposition, and this is enabled by the local enhancement of Cu electrodeposition at the bottom of filling feature formed on the wafer through manipulating the surface coverage of organic additives. The dimension of metal interconnection has been constantly reduced to increase the integrity of electronic devices, and the width of interconnection reaches the range of few tens of nanometer. This size reduction raises the issues, which are the deterioration of electrical property and the reliability of Cu interconnection, and the difficulty of Cu superfilling. The various researches on the development of organic additives for the modification of Cu microstructure, the application of pulse and pulse-reverse electrodeposition, Cu-based alloy superfilling for improvement of reliability, and the enhancement of superfilling phenomenon to overcome the current problems are addressed in this review.