• Title, Summary, Keyword: electromagnetic driving(전자기구동)

Search Result 22, Processing Time 0.033 seconds

Reduction of Electromagnetic Interference between the LCD Driving Module and WWAN Antennas (LCD 구동 모듈과 WWAN 안테나 간의 전자기 간섭 감소에 대한 연구)

  • Kim, In-Bok;Park, Jin-Hyun;Kang, Il-Heung;Kim, Hong-Joon;Woo, Dong-Sik;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.716-722
    • /
    • 2012
  • In this paper, we analyzed the RF interactions between WWAN antennas and an LCD driving module inside the cover of a notebook computer, and discussed reduction method of RF coupling. In order to simulate the RF noise source from the LCD driving module, a multi-band antenna was designed and used with a simplified notebook model to test the RF coupling phenomena. We verified that the RF noise coupling is enhanced at certain frequencies due to cavity structure formed inside the notebook computer. Also, we showed that conductive barrier walls, which are inserted inside the notebook, could be effective in reducing RF coupling.

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Battery Based High Voltage Capacitor Charger for HEMP Driving (HEMP 구동을 위한 배터리 기반 고전압 충전기)

  • Cho, Chan-Gi;Jia, Ziyi;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.124-126
    • /
    • 2019
  • 본 논문은 리튬 폴리머 배터리를 기반으로 하여 High-altitude Electromagnetic Pulse (HEMP)를 구동하는 고전압 충전기의 2단 충전과 직접 충전 방법에 관하여 다룬다. 2단 충전 방법은 삼상 변압기의 출력 전압을 정류한 600 V의 전압에 공진 현상을 이용하여 최종 출력 전압 1.0 kV을 생성하는 반면, 직접 충전 방법은 공진 현상을 이용하지 않고 삼상 변압기의 출력 전압을 정류하여 1.0 kV를 생성한다. 두 방법 모두 1.0 kV의 출력 전압을 생성하는 점은 동일하지만, HEMP 구동을 위해서는 서로 다른 고려사항을 갖는다. 이에 따라, 시뮬레이션 및 기초 부하 실험을 통해 2단 충전 구조와 직접 충전 구조의 차이점, 그리고 충전기와 부하의 결선에 따른 차이점이 비교되었다.

  • PDF

Design of an Electromagnetic Pump and Numerical Analysis of the Liquid Metal Flow (전자기펌프의 설계 및 액체금속 유동의 수치해석)

  • Kwon, Jeong-Tae;Kim, Seo-Hyun;Nahm, Taek-Hoon;Lim, Hyo-Jae;Kim, Chang-Eob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2589-2595
    • /
    • 2009
  • An electromagnetic pump has been designed using Load Distribution Method and Equivalent Circuit Method, and installed in a liquid metal flow system. The relation between the driving power of he electromagnetic pump and the flow rate was proposed. Also, the flow velocity and flow rate has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The calculation results were analyzed and compared with data from a commercial Code, FLUENT. They agreed well with each other within an error of 5%.

Design of Nonreciprocal Twin-toroidal Ferrite Phase Shifter (비가역성 쌍토로이드 페라이트 변위기 설계)

  • 이기오;김영범;박동철;신용수;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 1996
  • Nonreciprocal twin-toroid ferrite phase shifter is designed, fabricated, and tested. ABCD matrix method is used to design the phase shifter and to compute its optimum dimen- sions. Quarter-wave two-section impedance matching transformers are utilized in order to match the impedance of the empty guide to that of the ferrite-loaded guide. Driving circuit controls the current needed to drive the phase shifter. Measured insertion loss and VSWR characteristics within the operaring band(9.1GHz ~ 9.5GHz) are less than 1.2dB and 1.15, respectively. After temperature compensation technique is appied to the phase shifter, the measured phase error of the phase shifter is less than $\pm4$ between $-10^{\circ}C\;and\;+60^{\circ}C$.

  • PDF

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.

Transverse flux circumferential induction method as a driving principle of the contact-free revolving stage (비접촉 회전 스테이지에의 구동 원리로서의 횡자속 원주형 유도 방법)

  • Kim, Hyo-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10
    • /
    • pp.72-79
    • /
    • 2005
  • Compared with linear induction principle, the transverse flux circumferential induction principle is suggested as a driving mechanism of the revolving stage, which can rotate contactlessly without any supporting structure. The stage realizes the integrated motion of levitation, rotation, and planar perturbation, using the two-axis forces, normally directed force of the air-gap and tangential force, of the induction drivers mounted on the stator uniformly. In this paper, the force generating mechanism of the stage is described in detail. First, the various core shapes generating the transverse flux are analyzed to guarantee the proper thrust force. And the vector force intensity of the circumferential induction driver constituting the stage is compared with that of the linear induction driver. Especially it is shown that the magnetic force of the suggested system can be modeled with the linear equivalent model, including the test verification.

Development of Massage Seat Actuator for Automobile using Electromagnetic Analysis and Simulation (전자기해석 및 시뮬레이션을 적용한 차량용 마사지 시트 액츄에이터 개발)

  • Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.517-523
    • /
    • 2019
  • Recently, researches about automobile seat having function to support the comfort to driver and passenger during the driving are conducted in various fields including automobile seat having massage function. The effect of massage depends on the pattern of massage such as time, magnitude, and shape. In this paper, linear motor actuator, which is used as driving method in the automobile massage seat, and electromagnetic analysis method, which is used to improve the magnetic efficiency in the design of autuator, is proposed. Electromagnetic analysis using finite element method is conducted in the design of linear motor actuator. Input voltage shape for massage pattern is calculated by simulation using mathematical model of actuator. Performance test for massage pattern generation is conducted with automobile massage seat having developed actuator and controller. It is verified that developed actuator system is applicable in the automobile massage seat.

Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader (바코드 리더용 스캐닝 미러를 위한 무빙 코일 타입 VCM 설계)

  • Shin, Bu Hyun;Lee, Jeong Woo;Shim, Hyun Ho;Park, Sang Goo;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

Planar Vibratory Gyroscope using Electrostatic Actuation and Electromagnetic Detection (정전력 구동 및 전자력 검출형 평면 진송 각속도계)

  • 이상훈;임형택;이승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.1089-1092
    • /
    • 1995
  • A planar vibratory gyroscope using electrostatic actuation and electromagnetic detection is proposed. The gyroscope has large sensitivity and can be fabricated by using surface micrimachining, bulk micromachining and conventional machining technology. In this paper, the gyroscope and the electromagnetic detecting system equations are derived to determine the output characteristics for the planar vibratory gyroscope using electrostatic acturation and electromagnetic detection. The maximum output is obtained when the driving frequencyequals to the detecting frequency. The resonant frequencies of the resonator are determined by the beam stiffness, i.e. the material constants and spring dimensions. The dimensions of the beams are determined using the analytic vibration modelling. The expected resonant frequencies are 200Hz both and the sensitivity is 62mV/deg/sec with 4000 electronic circuit amplifying coefficient for an AC drive voltage of 3V bias voltage of 15V and DC field current of 50 mA.

  • PDF