• Title, Summary, Keyword: electronic nose

Search Result 257, Processing Time 0.036 seconds

Discrimination of the Heated Coconut Oil using the Electronic Nose (전자코를 사용한 가열처리 야자유의 판별)

  • Han, Kee-Young;Oh, Se-Yeon;Kim, Jung-Hoan;Youn, Aye-Ree;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • Effect of heat (160, 190, and $220^{\circ}C$ for 24 hr) on coconut oil was examined by principal component analysis using electronic nose consisting of six metal oxide sensors. Increase in heating temperature decreased ratio of resistance and first principal component score (from +0.952 to -0.325), indicating rancidity of coconut oil increased at high heating temperature. Result of electronic nose based on GC with surface acoustic wave sensor showed significant changes in volatile profiles of coconut oil. High resolution olfactory imaging $(VaporPrint^{TM})$ was particularly useful for evaluating oil quality. Peak numbers and areas increased with increasing heating time and temperature (160, $220^{\circ}C$). Electronic nose analysis can provide simple, fast, and straightforward results and is best suited for quality control and process monitoring in flavor field of food industry.

Application of Electronic Nose for Aroma Analysis of Persimmon Vinegar Concentrates (감식초 농축액들의 향기성분 분석에 대한 전자코의 적용)

  • Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.314-321
    • /
    • 1999
  • This study was performed to test application possibility of electronic nose with 32 conducting polymer sensor arrays for aroma analysis of persimmon vinegar. The 20, 30, 40, 50, 60, and $70^{\circ}Bx$ persimmon vinegar concentrates were prepared by vacuum concentration at $55^{\circ}C$. The recovery yield of water soluble solid to concentrates was 55.5% on $20^{\circ}Bx$ persimmon vinegar concentrate. As the concentration of persimmon vinegar concentrates increased, pH of concentrates increased and acidity as acetic acid decreased. From sensory evaluation for persimmon vinegar concentrates, as the concentration of persimmon vinegar concentrates increased, their cooking odor and umami taste increased, sour taste and acidic odor decreased, salty odor and astringency were not changed. Aroma analysis by electronic nose (AromaScan) showed no difference in normalized pattern and odor intensity among persimmon vinegar concentrates. All quality factors among concentrates also were less than 1.042. And so the electronic nose with conducting polymer sensor was not suitable for aroma analysis of persimmon vinegar concentrate.

  • PDF

Prediction of Kimchi Aging Using Electronic Nose System (전자코를 이용한 배추김치의 숙성도 예측)

  • Shin Jung-Ah;Choi Sang-Won;Lee Ki-Teak
    • Korean Journal of Food Preservation
    • /
    • v.12 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • The aging degree of Kimchi fermented at $4^{\circ}C$ for 29 days was evaluated by the correlation between the flavor and the acidity analysis. The Kimchi fermentation induced a gradual reduction in pH and an increase in acidity from $0.26\%$ (initial) to $1.15\%$ (29th day). Flavor pattern of the fermented Kimchi was obtained by the electronic nose system with 12 metal oxide sensors. Electronic nose analysis could differentiate the flavor profiles of Kimchi according to the fermentation periods, making 5 group in the principal component analysis (PCA) plot Therefore, aging degree of Kimchi could be differentiated by flavor patterns analysed by electronic nose.

Understanding the Sensory Characteristics of Various Types of Milk Using Descriptive Analysis and Electronic Nose (묘사분석 및 전자코 분석을 이용한 다양한 시유의 관능적 품질 특성 이해)

  • Chung, Seo-Jin;Lim, Chae-Ran;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.47-55
    • /
    • 2008
  • The objectives of this study were: 1) to develop the sensory lexicons of milk marketed in Korea, 2) to investigate the effects of pasteurization and milk composition on the sensory qualities of milk, and 3) to evaluate the correlation between descriptive analysis and the electronic nose method. Electronic nose and descriptive analyses were conducted to analyze the sensory characteristics of 14 milk samples. The 14 samples were provided from 4 manufacturers with different pasteurization methods, and varied in fat, calcium, and lactose content. Twenty-six sensory lexicons were developed to describe the sensory characteristics of the samples. The low temperature, long-time processed milk had a distinctive 'bi-rim' flavor regardless of the milk composition. The lactose-free milks were sweet, and the low-fat milks had relatively low intensities for most flavor attributes. The electronic nose method successfully grouped the milk samples primarily based on their composition, but grouped them weakly by pasteurization method.

Discrimination of Rice Volatile Compounds under Different Milling Degrees and Storage Time Using an Electronic Nose (전자코를 이용한 도정 및 저장에 따른 쌀의 휘발성분 패턴 판별)

  • Han, Hyun Jung;Dong, Hyemin;Noh, Bong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.187-191
    • /
    • 2016
  • The objective of this study was to analyze the volatile compounds in rice under various milling degrees using a mass spectrometry-based electronic nose and discriminant function analysis (DFA). Less volatile components were more frequently found in rice with a lower milling degree. Milling degree resulted in a shift of DF1 to the left side of the DFA plot. This indicated that the DF1 scores were correlated with the milling degree of rice. Brown rice was found to have more volatile components regardless of the milling degree. Thus, rice prepared at different milling degrees could be effectively discriminated with electronic nose analysis. Moreover, more volatile components were detected with an increase in storage time. A slight change in volatile components was found with an increase in the milling degree. The electronic nose could predict the milling degree and storage time of rice.

BionanoElectronic Nose (바이오나노 전자 코)

  • Kim, Kyung-Ho;Oh, Yun-Kwang;Kwon, Oh-Seok
    • Vacuum Magazine
    • /
    • v.5 no.1
    • /
    • pp.9-12
    • /
    • 2018
  • Electronic nose has been developed for detection of various hazardous molecules, especially vapor organic compounds (VOCs), by adsorption and desorption phenomenon. However, although conventional electronic noses have provided many advantages such as simple detection and high sensitivity, they still need advanced technologies for selective specificity in real samples. In this review, we provide bionanoelectronic noses with natural receptors for selective odorant detection. This review includes from fabrication of natural receptors and conducting nanomaterials to bioelectronic noses. We also discussed their perspective applications for the future at the conclusion.

Chemical and Volatile Characterization of Structured Lipid from Soybean Oil Containing Conjugated Linoleic Acid

  • Lee, Jeung-Hee;Lee, Jong-Ho;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • Structured lipid (SL) produced from soybean oil was enriched with conjugated linoleic acid (CLA). The SL had 21.9 mol % CLA isomers incorporated into SL-soybean after the 24-h reaction. Removal of tocopherols (73~84% loss from original soybean oil) was observed in the SL. Electronic nose can discriminate the aroma of SL-soybean from that of soybean oil. Many oxidative volatiles including pentenal, octenal, 2,4-decandienal, and nonenal were found in SL-soybean. Electronic nose, which is valuable for composite aroma analysis, can provide flavor information together with GC-MS that is useful for qualitative or quantitative analysis of each odor compound in SL.

Comparative Studies on the Discrimination of Angelicae Gigantis Radix by Near-infrared Spectroscopy, Electronic Nose and X-ray Fluorescence Spectrometry (근적외선분광법, 전자코 및 엑스선형광법을 이용한 당귀의 기원판별법 비교 연구)

  • 조창희;김수정;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.161-167
    • /
    • 2002
  • Angelicae gigantis radix is the root of the perennial plant, which belongs to the family Umbelliferae. However, this herbal drug is represented quite different chemical components according to its different genus name, though other herbal drugs (i.e. Leonuri Herba, Xanthii Fructus and so on) show similar constituents on the same name. The root of Angelica gigas containing the coumarin compounds is commonly used in Korea, while Angelica sinensis and Angelica acutiloba including phthalide compounds are used in China and Japan, respectively as Angelicae gigantis radix. In this paper, a nearinfrared spectroscopic method was developed to determine genus name of Angelica spp., especially A. gigas and A. sinensis which are commonly misused in herbal markets. X-ray fluorescence spectrometry and electronic nose have been also applied as nondestructive methods to discriminate A. gigas from A. sinensis according to their specific properties.

An Implementation of the Olfactory Recognition Contents for Ubiquitous (유비쿼터스를 위한 후각 인식 컨텐츠 구현)

  • Lee, Hyeon Gu;Rho, Yong Wan
    • Journal of the Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2008
  • Recently, with the sensor technology, research about the electronic nose system which imitated the olfactory organ are being pushed actively. But, in case of general electronic nose system, an aroma is measured at the laboratory space where blocked external environment and is analyzed a part of measured data. In this paper, we propose the system which can measure and recognize an aroma in natural environment. We propose the Entropy algorithm which can detect the sensor reaction section among the continuous detection processing about an aroma. And we implement the aroma recognition system using the PCA(Principal Components Analysis) and K-NN(K-Nearest Neighbor) about the detected aroma. In order to evaluate the performance, we measured the aroma pattern, about 9 aroma oil, 50 times respectively. And we experimented the aroma detection and recognition using this. There was an error of 0.2s in the aroma detection and we get 84.3% recognition rate of the aroma recognition.

Quality Evaluation of Dried Laver (Porphyra yezoensis Ueda) Using Electronic Nose Based on Metal Oxide Sensor or GC with SAW Sensor During Storage (Metal oxide 센서를 바탕으로한 전자코와 SAW 센서를 바탕으로한 GC를 이용한 저장 중 김의 품질 평가)

  • Cho, Yen-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.947-953
    • /
    • 2002
  • Two types of electronic nose were used for investigating the quality of dried lavers stored at 5, 15, and $30^{\circ}C$ RH of 32, 43, and 75%. The electronic nose is composed of metal oxide sensors, and GC is based on SAW sensor. Quality change in dried lavers was described in terms of the sensitivities $(R_{gas}/R_{air})$ of the sensors. Principal component analysis (PCA) was carried out using data obtained from six metal oxide sensors. The first principal component scores were correlated with quality changes of dried lavers. As storage time increased, the stored laver cluster separated from that of fresh lavers. A chromatogram was obtained from GC based on SAW sensor. Olfactory image, A $VaporPrint^{TM}$ image for pattern recognition, showed a significant difference between the stored and the fresh samples. Dried lavers during storage at $30^{\circ}C$ and 75% had bacterial counts of $5.7{\times}10^6\;CFU/g$ after 8 day. Increase of microbial count correlated with the response of electronic nose $(r^2=0.87)$. Whereas, color values showed no correlation.