• Title, Summary, Keyword: energy

Search Result 76,857, Processing Time 0.133 seconds

An Overview of Models for Energy Technology Assessment (에너지기술평가모형에 관한 고찰)

  • 김호탁;최기련;강희정;차재호
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.111-134
    • /
    • 1992
  • Energy system models have been broadly used for the solution of the assessment of technical and economical characteristics in the national energy systems. The purpose of this study is to overview the structures, potentials and usefulness of system models for energy technology assessment. The conventional models developed so far are not aquate to analyze the energy and environmental problems simultaneously. Energy system models integrated by multiobjective programming are also reviewed and discussed in this paper to judge their usefulness and applicability in simultaneously analyzing the energy and environmental problems.

  • PDF

Smart City Energy Inclusion, Towards Becoming a Better Place to Live

  • Cha, Sang-Ryong
    • World Technopolis Review
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2019
  • Where is a better place to live? In the coming era, this should be more than simply a livable place. It should be an adaptable place that has a flexible system adaptable to any new situation in terms of diversity. Customization and real-time operation are needed in order to realize this technologically. We expect a smart city to have a flexible system that applies technologies of self-monitoring and self-response, thereby being a promising city model towards being a better place to live. Energy demand and supply is a crucial issue concerning our expectations for the flexible system of a smart city because it is indispensable to comfortable living, especially city living. Although it may seem that energy diversification, such as the energy mix of a country, is a matter of overriding concern, the central point is the scale of place to build grids for realizing sustainable urban energy systems. A traditional hard energy path supported by huge centralized energy systems based on fossil and nuclear fuels on a national scale has already faced difficult problems, particularly in terms of energy flexibility/resilience. On the other hand, an alternative soft energy path consisting of small diversified energy systems based on renewable energy sources on a local scale has limitations regarding stability, variability, and supply potential despite the relatively light economic/technological burden that must be assumed to realize it. As another alternative, we can adopt a holonic path incorporating an alternative soft energy path with a traditional hard energy path complimentarily based on load management. This has a high affinity with the flexible system of a smart city. At a system level, the purpose of all of the paths mentioned above is not energy itself but the service it provides. If the expected energy service is fixed, the conclusive factor in choosing a more appropriate system is accessibility to the energy service. Accessibility refers to reliability and affordability; the former encompasses the level of energy self-sufficiency, and the latter encompasses the extent of energy saving. From this point of view, it seems that the small diversified energy systems of a soft energy path have a clear advantage over the huge centralized energy systems of a hard energy path. However, some insuperable limitations still remain, so it is reasonable to consider both energy systems continuing to coexist in a multiplexing energy system employing a holonic path to create and maintain reliable and affordable access to energy services that cover households'/enterprises' basic energy needs. If this is embodied in a smart city concept, this is nothing else but smart energy inclusion. In Japan, following the Fukushima nuclear accident in 2011, a trend towards small diversified energy systems of a soft energy path intensified in order to realize a nuclear-free society. As a result, the Government of Japan proclaimed in its Fifth Strategic Energy Plan that renewable energy must be the main source of power in Japan by 2050. Accordingly, Sony vowed that all the energy it uses would come from renewable sources by 2040. In this situation, it is expected that smart energy inclusion will be achieved by the Japanese version of a smart grid based on the concept of a minimum cost scheme and demand response.

Deriving Factors Affecting Energy Usage for Improving Apartment Energy Consumption Evaluation (공동주택 에너지 사용량 평가 개선을 위한 에너지 사용량 영향 요인 도출)

  • Eum, Mi-Ryeong;Hong, Won-Hwa;Lee, Ji-Ae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.27-34
    • /
    • 2018
  • The energy consumption of apartment houses is affected by various factors. The criteria for assessing current energy usage are area, region and purpose. The purpose of this study is to obtain the reliability of the method of evaluating the existing energy consumption certificate and to derive usable evaluation factors according to the correlation of factors affecting energy consumption. The research process collects energy usage data for apartment houses in Daegu and calculates statistical results through correlation analysis and multiple regression analysis. As a result, it was found that the power energy is influenced by the yearly factor of physical characteristics, and the heat energy and total energy usage are influenced by the energy source which is energy characteristic factor.

A study on Development of Korean - Energy System Management Model for Effect Analysis of Integrated Demand Management (통합수요관리 효과분석을 위한 한국형 Energy System Management 모형 개발에 관한 연구)

  • Kim, Yong-Ha;Jo, Hyun-Mi;Kim, Ui-Gyeong;Yoo, Jeong-Hui;Kim, Dong-Gun;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1103-1111
    • /
    • 2011
  • This paper is developed to Energy Balance Flow show the flow of total energy resource be used nationally. The Energy Balance Flow is applicable of demand management factor through the analysis of foreign energy model of supply and demand and energy statistic data in the country. This study is based on and developed to Energy system management model is able to appraisal efficient of energy cost cutting, CO2 emission reduction and Energy saving at the national level calculated effect reached amount of primary energy to change of energy flow followed application of demand side management factor is able to appraisal quantitatively at the total energy to model of demand and supply.

A Study on Effect of Applying Energy Storage System on SeoulMetro Line 2 (에너지저장시스템의 서울메트로 2호선 적용 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.966-971
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and CO2 emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the Energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut CO2 to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. This paper presents effects by applying the energy storage system to SeoulMetro Line 2.

  • PDF

Energy Consumption status of Apartment Buildings and Influence of Various Factors on Energy Consumption (공동주택의 에너지사용량 실태 분석 및 각종 인자가 에너지사용량에 미치는 영향 분석)

  • Kim, Yong-In;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.93-102
    • /
    • 2014
  • The aim of this study is to analyze the influence of various factors on energy consumption of apartment buildings. Energy consumption data of the Green Together, integrated building energy management system maintained by the government were used, and end-use and primary energy consumption data of 2012 were analyzed for 181 apartment complexes completed between 2004 and 2011 in Seoul. Energy consumption by use, source and heating type were analyzed. Then, energy consumption trends were analyzed and suggested according to energy efficiency ratings, number of households, areas for exclusive use, number of floors, core types, building types, orientations and completion years.

Parametric study on energy demands for steel special concentrically braced frames

  • Dogru, Selcuk;Aksar, Bora;Akbas, Bulent;Shen, Jay
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • Structures are designed in such a way that they behave in a nonlinear manner when subject to strong ground motions. Energy concepts have been widely used to evaluate the structural performance for the last few decades. Energy based design can be expressed as the balance of energy input and the energy dissipation capacity of the structure. New research is needed for multi degree of freedom systems (MDOFs)-real structures- within the framework of the energy based design methodology. In this paper, energy parameters are evaluated for low-, medium- and high-rise steel special concentrically braced frames (SCBFs) in terms of total energy input and hysteretic energy. Nonlinear dynamic time history analyses are carried out to assess the variation of energy terms along the height of the frames. A seismic energy demand spectrum is developed and hysteretic energy distributions within the frames are presented.