• Title, Summary, Keyword: entire function

Search Result 640, Processing Time 0.055 seconds

RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH TYPE BASED SOME GROWTH ASPECTS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.463-487
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire and meromorphic function with respect to another entire function.

A NOTE ON VALUE DISTRIBUTION OF COMPOSITE ENTIRE FUNCTIONS

  • Lahiri, Indrajit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • We discuss the value distribution of composite entire functions including those of infinite order and estimate the number of Q-points of such functions for an entire function Q or relatively slower growth.

  • PDF

MEASURES OF COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH TYPE AND RELATIVE (p, q)-TH WEAK TYPE

  • Biswas, Tanmay
    • The Pure and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.13-33
    • /
    • 2019
  • The main aim of this paper is to establish some comparative growth properties of composite entire functions on the basis of their relative (p, q)-th order, relative (p, q)-th lower order, relative (p, q)-th type, relative (p, q)-th weak type of entire function with respect to another entire function where p and q are any two positive integers.

ON A GENERALIZATION OF THE P$\'{O}$LYA-WIMAN CONJECTURE

  • Kim, Young-One
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.825-830
    • /
    • 1994
  • This paper is concerned with the zeros of successive derivatives of real entire functions. In order to state our results, we introduce the following notations : An entire function which assumes only real values on the real axis is said to be a real entire function. Thus, if a complex number is a zero of a real entire function, then its conjugate is also a zero of the same function.

  • PDF

ITERATED ENTIRE FUNCTIONS AND THEIR GROWTH PROPERTIES ON THE BASIS OF (p, q)-TH ORDER

  • Biswas, Tanmay;Choi, Junesang;Das, Pranab;Datta, Sanjib Kumar
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.169-212
    • /
    • 2016
  • Entire functions have been investigated so popularly to have been divided into a large number of specialized subjects. Even the limited subject of entire functions is too vast to be dealt with in a single volume with any approach to completeness. Here, in this paper, we choose to investigate certain interesting results associated with the comparative growth properties of iterated entire functions using (p, q)-th order and (p, q)-th lower order, in a rather comprehensive and systematic manner.

THE ITERATION OF ENTIRE FUNCTION

  • Sun, Jianwu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.369-378
    • /
    • 2001
  • In this paper, we obtain the following results: Let f be a transcendental entire function with log M(r,f)=$O(log r)^\beta (e^{log r}^\alpha)\; (0\leq\alpha<1,\beta>1$). Then every component of N(f) is bounded. This result generalizes the result of Baker.

  • PDF

ON THE TRANSCENDENTAL ENTIRE SOLUTIONS OF A CLASS OF DIFFERENTIAL EQUATIONS

  • Lu, Weiran;Li, Qiuying;Yang, Chungchun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1281-1289
    • /
    • 2014
  • In this paper, we consider the differential equation $$F^{\prime}-Q_1=Re^{\alpha}(F-Q_2)$$, where $Q_1$ and $Q_2$ are polynomials with $Q_1Q_2{\neq}0$, R is a rational function and ${\alpha}$ is an entire function. We consider solutions of the form $F=f^n$, where f is an entire function and $n{\geq}2$ is an integer, and we prove that if f is a transcendental entire function, then $\frac{Q_1}{Q_2}$ is a polynomial and $f^{\prime}=\frac{Q_1}{nQ_2}f$. This theorem improves some known results and answers an open question raised in [16].

Uniqueness of Entire Functions that Share an Entire Function of Smaller Order with One of Their Linear Differential Polynomials

  • Li, Xiao-Min;Yi, Hong-Xun
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.763-776
    • /
    • 2016
  • We prove a uniqueness theorem of entire functions sharing an entire function of smaller order with their linear differential polynomials. The results in this paper improve the corresponding results given by Gundersen-Yang[4], Chang-Zhu[3], and others. Some examples are provided to show that the results in this paper are best possible.