• Title, Summary, Keyword: ethnopharmacology

Search Result 44, Processing Time 0.037 seconds

Inhibitory Effect of Extracts from Woody Plants on Tumor Necrosis $Factor-{\alpha}$ Production in Lipopolysaccharide-Stimulated RAW264.7 cells (한국산 자생 수목 유래 수피추출물의 종양괴사인자 억제효과)

  • Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.4
    • /
    • pp.271-275
    • /
    • 2007
  • Naturally occurring substances are important biomedical resources with low toxicity and ethnopharmacology-based efficacy. Four out of 45 extracts (Celastrus orbiculatus, Cercis chinensis, Stephanadra incisa, and Weigela subsessilis) prepared from the bark of Korea Forest plants exhibited more than 50% of inhibition on $TNF-{\alpha}$ production in lipopolysaccharide (LPS)-activated RAW264.7 cells at $100\;{\mu}g/m{\ell}$. In particular, potential inhibitory components of 4 extracts showed more than 50% inhibition seemed to be concentrated in methylene chloride (MC) fraction from C. orbiculatus, in ethyl acetate (EtOAc) fraction from C. chinensis and in hexane (Hx) fraction from S. incisa, whereas inhibitory activities of W. subssilis were broadly seen in non-polar solvent fractions such as Hx, MC and EtOAc. Therefore, our results suggest that extracts from C. orbiculatus, C. chinensis, S. incisa and W. subsessilis may be developed as a therapeutic remedy against $TNF-{\alpha}-mediated$ diseases such as rheumatoid arthritis or further fractionated to isolate active components having $antiTNF-{\alpha}$ inhibitory activity.

Beneficial Antioxidative and Antiperoxidative Effect of Cinnamaldehyde Protect Streptozotocin-Induced Pancreatic β-Cells Damage in Wistar Rats

  • Subash-Babu, P.;Alshatwi, Ali A.;Ignacimuthu, S.
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • The present study was aimed to evaluate the antioxidant defense system of cinnamaldehyde in normal, diabetic rats and its possible protection of pancreatic ${\beta}$-cells against its gradual loss under diabetic conditions. In vitro free radical scavenging effect of cinnamaldehyde was determined using DPPH (1,1-diphenyl-2-dipicrylhydrazyl), superoxide radical, and nitric oxide radical. Streptozotocin (STZ) diabetic rats were orally administered with cinnamaldehyde at concentrations of 5, 10 and 20 mg/kg body weight for 45 days. At the end of the experiment, the levels of plasma lipid peroxides and antioxidants such as vitamin C, vitamin E, ceruloplasmin, catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase were determined. A significant increase in the levels of plasma glucose, vitamin E, ceruloplasmin, and lipid peroxides and significant decrease in the levels of plasma insulin and reduced glutathione were observed in the diabetic rats. Also the activities of pancreatic antioxidant enzymes were altered in the STZ-induced diabetic rats. The altered enzyme activities were reverted to near-normal levels after treatment with cinnamaldehyde and glibenclamide. Histopathological studies also revealed a protective effect of cinnamaldehyde on pancreatic ${\beta}$-cells. Cinnamaldehyde enhances the antioxidant defense against reactive oxygen species produced under hyperglycemic conditions and thus protects pancreatic ${\beta}$-cells against their loss and exhibits antidiabetic properties.

Inhibitory Activity of Cordyceps bassiana Extract on LPS-induced Inflammation in RAW 264.7 Cells by Suppressing NF-κB Activation

  • Yoon, Deok Hyo;Han, Changwoo;Fang, Yuanying;Gundeti, Shankariah;Han Lee, In-Sook;Song, Won O;Hwang, Ki-Chul;Kim, Tae Woong;Sung, Gi-Ho;Park, Haeil
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Cordyceps bassiana has long been used as an oriental medicine and reported to possess diverse biological activities. The fruiting bodies of Cordyceps bassiana was extracted with ethanol and then further fractionated with n-hexane, ethyl acetate, n-butanol and water. The butanol fraction from Cordyceps bassiana (CBBF) exhibited the most effective in anti-inflammatory activity in RAW 264.7 macrophages and the roles of CBBF on the anti-inflammation cascade in LPS-stimulated RAW 264.7 cells were studied. To investigate the mechanism by which CBBF inhibits NO, iNOS and COX-2, the activation of $I{\kappa}B$ and MAPKs in LPS-activated macrophage were examined. Our present results demonstrated that CBBF inhibits NO production and iNOS expression in LPS-stimulated RAW 264.7 macrophage cells, and these effects were mediated through the inhibition of $I{\kappa}B-{\alpha}$, JNK and p38 phosphorylation. Also, CBBF suppressed activation of MAPKs including p38 and SAPK/JNK. Furthermore, CBBF significantly suppressed LPS-induced intracellular ROS generation. Its inhibition on iNOS expression, together with its antioxidant activity, may support its anti-inflammatory activity. Thus Cordyceps bassiana can be used as a useful medicinal food or drug for further studies.

Apoptosis-Induced Cell Death due to Oleanolic Acid in HaCaT Keratinocyte Cells -a Proof-of-Principle Approach for Chemopreventive Drug Development

  • George, V. Cijo;Kumar, D.R. Naveen;Suresh, P.K.;Kumar, R. Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2015-2020
    • /
    • 2012
  • Oleanolic acid (OA) is a naturally occurring triterpenoid in food materials and is a component of the leaves and roots of Olea europaea, Viscum album L., Aralia chinensis L. and more than 120 other plant species. There are several reports validating its antitumor activity against different cancer cells apart from its hepatoprotective activity. However, antitumor activity against skin cancer has not beed studied well thus far. Hence the present study of effects of OA against HaCaT (immortalized keratinocyte) cells - a cell-based epithelial model system for toxicity/ethnopharmacology-based studies - was conducted. Radical scavenging activity ($DPPH{\cdot}$) and FRAP were determined spectrophotometrically. Proliferation was assessed by XTT assay at 24, 48 and 72 hrs with exposure to various concentrations (12.5-200 ${\mu}M$) of OA. Apoptotic induction potential of OA was demonstrated using a cellular DNA fragmentation ELISA method. Morphological studies were also carried out to elucidate its antitumor potential. The results revealed that OA induces apoptosis by altering cellular morphology as well as DNA integrity in HaCaT cells in a dose-dependent manner, with comparatively low cytotoxicity. The moderate toxicity observed in HaCaT cells, with induction of apoptosis, possibly suggests greater involvement of programmed-cell death-mediated mechanisms. We conclude that OA has relatively low toxicity and has the potential to induce apoptosis in HaCaT cells and hence provides a substantial and sound scientific basis for further validation studies.