• Title, Summary, Keyword: feed-forward back propagation (FFBP)

Search Result 2, Processing Time 0.021 seconds

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

Compressive strength prediction of limestone filler concrete using artificial neural networks

  • Ayat, Hocine;Kellouche, Yasmina;Ghrici, Mohamed;Boukhatem, Bakhta
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The use of optimum content of supplementary cementing materials (SCMs) such as limestone filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, such as increase in physical properties, enhancement of sustainability in concrete industry and reducing $CO_2$ emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs training in this study. The training, testing and validation of data during the backpropagation training process yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the developed model to certain essential parameters affecting the compressive strength of concrete. The effects and benefits of limestone filler on hardened properties of the concrete such as compressive strength were well established endorsing previous results in the literature. The results of this study revealed that the proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the LF concrete compressive strength prediction.