• Title, Summary, Keyword: fenoxaprop

Search Result 12, Processing Time 0.033 seconds

Antagonistic Mode of Action of Fenoxaprop-P-ethyl Phytotoxicity with Bentazon (Fenoxaprop-P-ethyl의 제초활성에 대한 Bentazon의 길항작용기구)

  • Ma, S.Y.;Kim, S.W.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Antagonistic mode of action of fenoxaprop-P-ethyl [ethyl(R)2-4-{(6-chloro-2-benzoxazolyloxy) phenoxy}propionate] with bentazon was investigated with respect to absorption, translocation, metabolism, and change in target site response of fenoxaprop-P-ethyl using four-leaf stage of rice(Oryza sativa L.) and barnyardgrass [Echinochloa eras-galli (L.) P. Beauv.]. Shoots of rice and barnyardgrass was more sensitive to fenoxaprop-P-ethyl than the roots. More than 90% of fenoxaprop-P-ethyl was absorbed within 6 hours after treatment and 30% of the absorbed was acropetally and basipetally translocated at 24 hours after treatment. Fenoxaprop-P-ethyl was rapidly transformed to its acid form, fenoxaprop(2-[4-(6-chloro-2-benzoxazolyloxy)phenoxy]propionic acid), which was subsequently metabolized to polar conjugates. However, changes in absorption, translocation, and metabolism of fenoxaprop-P-ethyl by bentazon treatment were not found in both species. Background activity of acetyl-CoA carboxylase(ACCase) in rice and barnyardgrass was 26.5 and 23.2nmol/min/mg, respectively. Concentration required to inhibit fifty percent enzyme activity$(I_{50})$ in vitro was 6.5~7.4${\mu}M$ of fenoxaprop-P-ethyl and more than 500${\mu}M$ of bentazon. There were no significant differences in $I_{50}$ value between two treatments of fenoxaprop-P-ethyl alone and its bentazon mixture. However, bentazon reduced ACCase activity in vivo and inhibited electron transport in chloroplast thylakoid. Based on the results obtained, it is concluded that the antagonistic effect of bentazon occurs due not to direct effect on target site of fenoxaprop-P-ethyl, but to indirect involvement in reducing herbicidal activity of fenoxaprop-P-ethyl through physiological disturbances caused by bentazone at whole chloroplast level.

  • PDF

Chiral effect of fenoxaprop-ethyl on rice (Orysa sativa) and barnyardgrass (Echinochloa crus-galli) (벼와 피에 대한 Fenoxaprop-ethyl의 이성체효과)

  • Kim, Tae-Joon;Kim, Jin-Seog;Cho, Jeong-Sup;Chang, Hae-Sung;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.58-61
    • /
    • 2001
  • A greenhouse study was conducted to evaluate the effect of R(+), S(-) and racemic mixture of fenoxaprop-ethyl on rice and barnyardgrass. In addition, in wire acetyl-coenzyme A carboxylase inhibition to those chiral compounds was determined. In the greenhouse trial, the R(+) and S(-) fenoxaprop showed respectively tile highest and the lowest biological activity on both plants. This dose-response in whole plant level was consistent with the result of in vitro dose-response of acetyl-coenzyme A carboxylase. These results corfirmed tllat the R(+) isomer is biologically more active than the S(-) isomer, and the target site of fenoxaprop is the enzyme acetyl-coenzyme A carboxylase. It was an interesting result that rice safety was improved in the S(-) isomer compared with the R(+), and the respective selectivity index was 1.5 and 0.57 in a greenhouse experiment; however, those values resulting from ACCase assay were not substantially different each other at in vitro level. Those results suggested that the fundamental selectivity of fenoxaprop-ethyl between rice and barnyardgrass would not exist at target site level.

  • PDF

Adsorption and Movement of Fenoxaprop-P-ethyl in Soils (토양중 fenoxaprop-P-ethyl의 흡착성 및 이동성)

  • Han, Soo-Gon;Ahn, Byung-Koo;Moon, Young-Hee
    • Korean Journal of Weed Science
    • /
    • v.18 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • This study was carried out to investigate the adsorption and the movement of herbicide fenoxaprop-P-ethyl in the silty clay soil(SiC) and the sandy loam soil(SL). Fifteen percent of the added herbicide was adsorbed within 30 min after shaking, and a quasi-equilibrium was reached after 8 to 14 h. The time required for 50% adsorption was 15.8 h in the SiC and 19.3 h in the SL. The equilibrium adsorption isotherm was followed by the Freundlich equation and the Kd was 3.86 in the SiC and 2.32 in the SL. The herbicide in the soil columns flooded with 3 cm water depth and eluted at 0.8 cm/day was leached to 6 cm and 8 cm depth at 7 and 21 days after the treatment, respectively. However, the movement was widened with increased amount of leaching water. The herbicide in the field soils was moved up to 6 cm and 8 cm depth at 14 and 56 days after the treatment, respectively. However, the large amount of the applied herbicide was distributed in 0~2 cm profile in all of the soils examined. Half-life of the chemical in soils was shorter than 7 days and the time to 90% degradation was about 4 weeks. The results indicate that the herbicide has relatively small mobility and short persistence.

  • PDF

Control of Bermudagrass (Cynodon dactylon) Causing Weedy in Zoysiagrass matrella Merr (금잔디에 잡초성 버뮤다그래스 방제)

  • Tae, Hyun-Sook;Kim, Yong-Seon;Heo, Young Du
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.402-407
    • /
    • 2013
  • Bermudagrass (Cynodon dactylon.) is one of the most difficult weedy species to control in turfgrass because it's high tolerant to various environmental and management stresses. This experiment was performed to find the integrated weed management including cultural practices to suppress bermudagrass in Zoysiagrass matrella (L) Merr. As results, two sequential applications of Fluazifop-P-butyl 0.05 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ and Fenoxaprop-P-ethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ applied on 20 days intervals were evaluated the primary option for bermudagrass suppression and turfgrass injury was acceptable in zoysiagrass. In both treatments, turf injury was observed during 30days after the first application and almost recovered at 40days. While Fenoxaprop-Pethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-22}$ were lightly phytotoxic to zoysiagrass in chlorophyll content test, there was no growth inhibition of zoysiagrass. Verticut practice (4 mm depth) just before herbicides application where zoyisagrass is contaminated with bermudagrass was not helpful to reduce turf injury in this experiment. However, alone verticut management was utilized to decrease about 12-14% bermudagrass population. Thus the application of Fenoxaprop-P-ethyl 0.1 ml $m^{-2}$ + Triclopyr-TEA 0.5 ml $m^{-2}$ which are permitted for turfgrass after zoysiagrass is perfectly recovered from turf injury by verticut practice should be utilized for bermudagrass reduction in zoysiagrass.

Facile synthesis of optical pure fenoxaprop-p-ethyl[ethyl (R)-2-{4-(chloro-1,3-benzoxazol-2-yloxy)phenoxy}propionate] (광학활성 제초제 fenoxaprop-p-ethyl [ethyl (R)-2-{4-(6-chloro-1,3-benzoxazol-2-yloxy)phenoxy}propionate]의 새로운 합성법)

  • Ryu, Sung-Kon;Ko, Young-Kwan;Chang, Hae-Sung;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Wan;Kim, Dae-Whang;Chung, Kun-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • Fenoxaprop-p-ethyl[Ethyl (R)-2-{4-(6-chloro-1,3-benzoxazol-2-yloxy)phenoxy}propionate] is well known as a herbicide for its specific activity against the weed grasses. This compound was synthesized by the reaction of 4-(6-chloro-1,3-benzoxazol-2-yloxy)phenol and ethyl (S)-O-(p-toluenesulfonyl)lactate in good yields with high optical pure(optical purity: 99.9% up). In this process Walden inversion occurs, whereby the S-configuration of the propionic acid derivative is converted to the R-configuration of the final product. 4-(6-Chloro-l,3-benzoxazol-2-yloxy)phenol was obtained by 5 step reactions in over-all 70% yields using inexpensive raw materials.

Creeping Bentgrass(Agrostis palustris Huds.) Control in Kentucky Bluegrass(Poa pratensis L.) Fairways (켄터키 블루그래스 페어웨이에서 문제가 되는 크리핑 벤트그래스 방제)

  • Tae Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • Creeping bentgrass (Agrostis palustris Huds.) had been the problematic weed for Kentucky bluegrass (Poa pratensis L.) fairway since it shows light green color all year. Experiment was carried out to determine the best herbicides combination to control creeping bentgrass in Kentucky bluegrass. fairway without injury. To investigate the efficacy of herbicides, five post-emergence herbicides of asulam WG ($87.6\%$), imazaquin SL ($20\%$), fenoxaprop-P-ethyl EC ($7\%$), mecoprop SL ($50\%$), triclopyr-TEA SL ($30\%$) and one pre-emergence herbicide pendimethalin EC ($31.7\%$) treated on 21 Sept. and 10 Nov. 2003. Kentucky bluegrass visual quality evaluated 30 and 50 days after application for phytotoxic effects of the herbicides. As a result, asulam WG (0.2g/$m^{2}$) and imazaquin SL (0.3ml/$m^{2}$) showed approximately $90\%$ of control in creeping bentgrass, but visual quality of Kentucky bluegrass significantly decreased from 20 to 50DAT (day after treatment). However, creeping bentgrass was acceptably controlled(over $80\%$) by fenoxaprop-P-ethyl EC (0.4ml/$m^{2}$)+triclopyr-TEA SL(0.3 ml/$m^{2}$) applied twice on 21 Sept. and 1 Oct. 2003 without serious injury on Kentucky bluegrass. Therefore, it is suggested that an application of fenoxaprop-P-ethyl EC (0.4ml/ $m^{2}$)+triclopyr-TEA SL (0.3 ml/$m^{2}$) may be more effective to control creeping bentgrass in Kentucky bluegrass with the least phytotoxicity by herbicides.

Tolerance of Turfgrasses to the Application of Herbicides (제초제 처리에 따른 잔디의 저항성에 관한 연구)

  • 심상열;신영수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.1
    • /
    • pp.101-110
    • /
    • 1994
  • A field study was carried out to investigate the visual injury of zoysiagrass and creeping bentgrass by the application of various herbicides the result were as follows. 1. Trifluralin + benefin and dithiopyr did not injure creeping bentgrass and zoysiagrass. 2. Creeping bentgrass was safe while zoysiagrass was slightly injured within acceptable level with benefin. 3. Oryzalin caused injury both on creeping bentgrass and zoysiagrass. However, the injury of zoysigrass was within acceptable level while the injury of creeping bentgrass increased without acceptable level when applied at>5kg/ha. 4. Creeping bentgrass was tolerant to pendimethalin only when treated at<3.4kg/ha whereas zoysiagrass was tolerant regardless of rate. 5. Creeping bentgrass treated with fenoxaprop, oxadiazon, and bensulide were severely injured. However, turfgrasses treated with bensulide recovered rapidly when compared with fenoxaprop and oxadiazon. 6. Zoysiagrass treated with 2,4-D, dicambe, bentazon was safe when applied at mid summer.

  • PDF

Weed Infestation and Effective Weed Control in Direct - Seeded Rice (담수(湛水) · 건답직파(乾畓直播) 벼재배(栽培)에서 잡초(雜草)의 발생특성(發生特性) 및 효과적(效果的)인 잡초방제(雜草防除))

  • Kim, H.H.;Lee, S.G.;Lee, J.C.;Song, I.M.;Shin, C.W.;Moon, C.S.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • This experiment was conducted to investigate weed infestation and to determine effective weed control methods in direct-seeded rice. Twenty two weed species occurred in dry- and water-seeded rice, which was mainly composed of annual weeds. Dominant weed species in dry-seeded rice were Cyperus difformis, Echinochloa crus-galli, Aneilema keisak and Digitaria sanguinalis in discending order. Dominant weed species in water-seeded lice were E. crus-galli, C. difformis, Monochoria vaginalis and Scirpus juncoides. E. crus-galli emerged at 7 days after sowing. In water-seeded rice, E. crus-galli emerged at 5 days after sowing, and M vaginalis, S. juncoides and C. difformis at 8~10 days after sowing. Mean days to emerge important weeds was 20 days in dry-seeded rice and 13 days in water-seeded rice. Leaf development of weeds was faster than that of rice in dry-seeded rice. In water-seeded rice, E eras-galli was more vigorous than rice, but leaf development of other weeds were slower than that of rice. Changes in number of weeds and dry weight oil weed species varied depending upon weed species in the direct-seeded rice. Dry weight of weeds were increased greatly from 30 days to 60 days after sowing in dry-seeded rice. Number of weeds tended to increase up to 40 days after sowing drastically, and then trend of the increase was dull thereafter. Dry weight and number of weeds increased up to 20~60 days after sowing in water-seeded rice. Most effective herbicide treatments was foliar application of cyhalofop/bentazon at 20 days after sowing followed by fenoxaprop/bentazon at 45 days after sowing in dry-seeded rice. All herbicide treatments except foliar applications were very effective to control weeds in water-seeded rice. Slight phytotoxicity was observed in foliar applied fenoxaprop/bentazon at 45 days after sowing in water-seeded rice, but it did not affect rice yield.

  • PDF

Effect of mixtures of gibberellic acid and several herbicides on the herbicidal activity against wild oat (Avena fatua L.) (Gibberellic acid와 여러 가지 제초제와의 혼합처리가 메귀리에 대한 제초활성에 미치는 영향)

  • Kim, Jin-Seog;Choi, Jung-Sup;Hong, Kyung-Sik;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.107-116
    • /
    • 1998
  • Based on the differential growth response to exogenous gibberellic acid ($GA_{3}$) between semi-dwarf wheat(Triticum aestivum) and wild oat(Avena fatua), we examined the possibility of improving the selective performance of several herbicides by $GA_{3}$ application and the physiological background of $GA_{3}$-induced increase in herbicidal activity. Growth of wild oat was 4 to 5 times higher than that of wheat by $GA_{3}$ treatment. Pretreatment of wild oat seed with 300 ppm $GA_{3}$ increased the herbicidal activities of trifluralin and isoproturon by soil-surface application, but not of alachor and metsulfuron-methyl. $GA_{3}$ applied simultaneously with post-emergence herbicides resulted in a significant or moderate improvement of the efficacy of such herbicides as tralkoxydim, fenoxaprop-ethyl, metsulfuron-methyl, metribuzine and isoproturon, but not in the mixtures of oxyfluorfen or paraquat with $GA_{3}$. In the sequencial treatment of tralkoxydim and $GA_{3}$ at interval of one-day, $GA_{3}$ applied prior to tralkoxydim significantly increased a chlorosis and desiccation of leaf without affecting the growth inhibition by tralkoxydim. Tralkoxydim followed by $GA_{3}$ application had lower herbicidal activity than that of $GA_{3}$ followed by tralkoxydim treatment. Electrolyte leakage response of $GA_{3}$-pretreated or $GA_{3}$-untreated wild oat leaf against several compounds inducing membrane. peroxidation was compared. Differencial responses were observed in oxyfluorfen and isoproturon treatments with an increased electrolyte leakage in $GA_{3}$-pretreated tissue, but not in paraquat and rose bengal treatments. These results suggest that $GA_{3}$-induced increase in herbicidal activity is likely to be dependent on a herbicide type and may be due to activation of a metabolic ability related with herbicidal reponse as well as an increase in the herbicide absorbtion and translocation, rather than due to membrane and cell wall extention induced by $GA_{3}$, which in turn makes the herbicides easily enter.

  • PDF

Structure-activity relationships on the selective herbicidal activity between rice plant and barnyard grass by the N-phenyl substituents in 2-(4-(6-chloro-2-benzoxazolyloxy)-phenoxy)-N-phenyl propionamide derivatives (2-(4-(6-chloro-2-benzoxazolyloxy) phenoxy)-N-phenyl propionamide 유도체 중 N-phenyl 치환체들에 의한 벼와 피의 선택적 제초활성에 미치는 구조-활성관계)

  • Sung, Nack-Do;Lee, Sang-Ho;Chang, Hae-Sung;Kim, Dae-Whang;Kim, Jin-Suk
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.11-19
    • /
    • 1999
  • A some of synthesized 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl propionamide derivativesa substrates were found to selectivity significantly with both rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) for those her- bicidal activities with post emergence in up land. The selectivity of substrates against rice plant better than that of Fenoxaprop-ethyl. The structure activity relationship (SAR) n the selectivity of N-phenyl substituents were analyzed by the Free-Wilson and Hansch method. The SAR approach against barnyard grass is shown that the optimal ($({\pi})_{opt.}=1.60$) hydrophobicity and electron donating effects ($0<{\sigma}$ & 0$(ES)_{opt.}=0.87$) so that the herbicidal activity against rice plant can be decreased. The significance of these results on the selectivity between barnyard grass and rice plant is discussed. And it is assumed that the 2-ethoxy-3-methoxy-4-dimethylamino group substituent ($pI_{50}$=6.60, 1g/ha) is selected as the most highest herbicidal activity against barngard grass in green house.

  • PDF