• Title, Summary, Keyword: fiber type composition

Search Result 112, Processing Time 0.037 seconds

Does Tenderness of Korean Native Pork is Related Fiber type?

  • Hwang, I.H.;Park, B.Y.;Cho, S.H.;Kim, J.H.;Kim, D.H.;Kim, Y.K.;Kim, M.J.;Lee, J.M.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • /
    • pp.305-309
    • /
    • 2004
  • More a reddish color of KNBP was related to higher frequency of slower fiber type. Tender meat with a faster ageing rate for KNBP was coincided with a faster proteolytic rate, and likely a higher collagen solubility (data not shown). However, it is not confirmed whether the results were linked to the favorable pH/temperature window during rigor development, or fiber composition for tender meat.

  • PDF

The Mechanical Properties and Alkali Hydrolysis on Composition Ratio of Nylon 6-Polyester Split-type Yarn (Nylon 6-Polyester 조성비에 따른 분할사의 알칼리 분해거동과 물성 변화)

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • In this research, split-type complex yarn of 20:80, 40:60, 50:50 nylon6/polyester composition ratio was used in order to impose unique sense on split-type complex woven. After treating both split-type complex yarn of each ratio and its produced woven in alkali solution, we got the following results by checking physical properties based on alkali proportion and treatment time. Under the condition of NaOH 20% in this experiment, it took approximately double time 20% loss of weight. The loss of weight became high when polyester proportion of N/P(nylon6/polyester) composition ratio was low, in the same fineness yarn. Even though polyester proportion was low, the loss of weight was low when the fineness was high. N/P division was well processed at about 25% loss of weight under the condition of NaOH 20%, treatment temperature $50^{\circ}C$, and treatment time 60 minutes. The research provides that the loss of weight should be processed around treatment time 24 hours in the case of NaOH concentration 15%, and treatment time 15 hours in the case of NaOH concentration 18%, respectively, in order to achieve N/P woven division ratio of about 70%-80% in industrial fields.

Tribological Properties of the Aluminum Short fiber and glass fiber Reinforced Tin-Bronze Matrix Composites (알루미나 단섬유 및 유리섬유 보강 청동기지 복합재의 마모특성 연구)

  • 황순홍;안병길;이범주;최웅수;허무영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • /
    • pp.13-19
    • /
    • 1996
  • The tribological properties of the aluminum short fiber and glass fiber reinforced tin-bronze matrix composites manufactured by vacuum hot pressing was studied. The effect of the composition and the relative density on the wear properties was examined by a reciprocal type tribo-test machine. The results were discussed by the observation of the microstructure of sintered specimen and worn surface observation using SEM and EDS. Addition of the fibers led to the wear resistance since the metal matrix was reinforced by the fibers. The reinforcement of the fiber seemed to be stronger as the distribution of the fibers was more uniform. Graphite also reduce the wear loss. The pores in the sintered composites seemed to play an important role to improve the wear resistance since the pores provide the places where the solid lubricants locate.

  • PDF

Comparison of Characteristics of Myosin Heavy Chain-based Fiber and Meat Quality among Four Bovine Skeletal Muscles

  • Kim, Gap-Don;Yang, Han-Sul;Jeong, Jin-Yeon
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.819-828
    • /
    • 2016
  • Muscle fiber characteristics account for meat quality and muscle fibers are mainly classified into three or more types according to their contractile and metabolic properties. However, the majority of previous studies on bovine skeletal muscle are based on myosin ATPase activity. In the present study, the differences in the characteristics of muscle fibers classified by the expression of myosin heavy chain (MHC) among four bovine skeletal muscles such as longissimus thoracis (LT), psoas major (PM), semimembranosus (SM) and semi-tendinosus (ST) and their relationships to beef quality were investigated. MHCs 2x, 2a and slow were identified by LC-MS/MS and IIX, IIA and I fiber types were classified. PM, which had the smallest size and highest density of fibers regardless of type, showed the highest myoglobin content, CIE $L^*$, $a^*$, $b^*$ and sarcomere length (p<0.05), whereas ST with the highest composition of IIX, showed high shear force and low sarcomere length (p<0.05). The correlation coefficients between muscle fiber characteristics and meat quality showed that type IIX is closely related to poor beef quality and that a high density of small-sized fibers is related to redness and tenderness. Therefore, the differences in meat quality between muscles can be explained by the differences in muscle fiber characteristics, and especially, the muscles with good quality are composed of more small-sized fibers regardless of fiber type.

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Relationships between Myosin Light Chain Isoforms, Muscle Fiber Characteristics, and Meat Quality Traits in Porcine Longissimus Muscle

  • Choi, Young-Min;Ryu, Youn-Chul;Lee, Sang-Hoon;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.639-644
    • /
    • 2005
  • The aim of this study was to investigate the effect of the myosin light chain (MLC) isoforms on the muscle fiber characteristics and meat quality traits in porcine longissimus muscle. Pale, soft, exudative (PSE) samples had a lower content of essential light chain (ELC) 1S isoforms and a higher proportion of the fiber type IIB than the reddish-pink, firm, non-exudative (RFN) samples. These compositions suggest that the PSE pork has a higher glycolytic and a lower oxidative capacity than the RFN pork. Therefore, these characteristics of PSE pork might affect the metabolic rate and meat quality traits, including protein solubility. In addition, the indicator traits of the postmortem metabolic rate were related to the ELC 1F/3F ratio ($pH_{45\;min}$: r = -0.43, P < 0.001; R-value: r = 0.53, P < 0.001). These results suggest that the MLC isoform composition can affect the postmortem metabolic rate and meat quality traits.

Wear of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites at the Room Temperature and an Elevated Temperature (알루미나 단섬유 보강 청동기지 복합재의 상온 및 고온 마모)

  • 최준호;허무영
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.45-52
    • /
    • 1995
  • The wear behavior of alumina short fiber reinforced tin-bronze matrix composites was studied at the room temperature and an elevated temperature. The effect of the composition of specimens and the variation of wear conditions on the wear properties was examined by a pin-on-disc type wear testing machine. The wear mechanism according to the compositon of specimens at various wear conditions was discussed by the observation of the microstructure and the analysis of the composition on the worn surfaces. A thicker oxide layer on worn surfaces led to a lower wear loss because of the lubricating effect of oxide layers between pin and disc. As the testing temperature was raised to 350$^{\circ}$C, the fiber reinforced composites exibited markedly increased wear resistance even at a higher applied load since the reinforcement of composites with alumina fibers was not affected to a large extent by raising temperature. The results obtained by AES and EDS analysis indicated that the oxide layer of the worn surfaces formed at 350$^{\circ}$C was proved as Fe-oxide. This was explained by the faster formation of Fe-oxide than Cu-oxide at 350$^{\circ}$C.

A Molecular Dynamics Simulation on the Self-assembly of ABC Triblock Copolymers.3. Effects of Block Composition in Asymmetric Triblock Copolymers

  • Ko, Min-Jae;Kim, Seung-Hyun;Jo, Won-Ho
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • The self-assembly of asymmetric ABC triblock copolymers in the ordered structure is investigated using an isothermal-isobaric molecular dynamics simulation. Unlike symmetric A BC triblock copolymers, more fascinating mophologies are observed in asymmetric ones because of a larger difference of incompatibility between the components. Various modes of self-assembly in assymmetric ABC triblock copolymers are also observed depending on the block composition. When the composition of block A Is changed from 0.125: to 0.25 at the same $f_B$ : 0.25, the morphological transition from the “cylinder in cylinder” to “cylinders at cylinder” structure is observed in the simulation. In the case of ABC triblocks with $f_B$=0.5, a lamellar-type structure is changed to a cylinder-type structure with increasing the length of block A. When the midblock length increases further to $f_B$=0.625, the “spheres on cylinder” structure is observed in both the $A_{10}$$B_{50}$$C_{20}$ and $A_{20}$$B_{50}$$C_{10}$ triblocks. From these results, the phase diagram of ABC triblock copolymers can be constructed.

A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites (고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구)

  • Koh, Kyung-Taeg;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • This paper present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the workability of high strength steel fiber reinforced cementitious composites. As for the test results, it was found that the workability of high strength steel fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of steel fiber improved the workability of fiber reinforced cementitious composites. And the steel fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics

  • Ismail, Ishamri;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.873-883
    • /
    • 2017
  • Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers' preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.