• Title, Summary, Keyword: food spoilage microorganisms

Search Result 79, Processing Time 0.039 seconds

Application of Irradiation Technology to Preserving and Improving Qualities of Agricultural Products

  • Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.295-301
    • /
    • 1998
  • Potential applications of irradiation technology inpostharvest handling of agricultural products have been documented over the past five decades. The biological effects of ionizing radiation on food were demonstrated to have the potential both of reducing the storage losses by controlling spoilage microoraganisms, insects, to have the potential both of reducing the storge losses by controlling spoiliage microorganisms, insects, sprouting and ripening, and of improving the hygienic quality of raw and processed products. Food irradiation is recognized as a physical and cold process using gamma-rays from radioisotope sources and electron-beam from the accelerator. As one of the technologies or techniques for preserving and improving the safety of food, irradiated technology has been approved in some 40 countries for more than 200 individeual items of foods and of these about 30 countries including Korea are commerically utilizing this technology. Although limited quantities of irradiated foods are available in the market now, the proper uses of this renewed technology will offer great possibilities not only for increasing the availability of postharvest agricultural products, thereby contributing to price stabilization in the off-season, but also for reducing reliance on chemicals used for sanitary and quarantine requirements. This paper deals with biological actions of ionizing radiation and its potential applications in the agri-food industry from the international point of view.

  • PDF

Shalf Life Enhancement of Minimally Processed Fruits and Vegetables

  • Kim, Dong-Man
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • /
    • pp.6-9
    • /
    • 1993
  • According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. According to changes in population, economic conditions, life-stile and eating habits, the frui ts and vegetables market wi 11 be shi fted from processed (i. e. , canned) to fresh. Undressed fresh produce, consisting of washed, disinfected and peeled fruits and vegetables that either sliced or grated, are currently increased in demand by retail and institutional market which use them as salad components or in ready-to use foods, Main attributes of minimally processed fruits and vegetables are convenience and fresh-like quality. Minimally processed Products readily deteriorate in quality, especially color and texture, as a result of endogeneous enzyme enhanced respiration and microorganisms which lead to reduced shelf Iife. Thus. to prevent these undesirable changes , val'ious techniques such as controlled atmosphere (CA) storage, modified atmosphere OIA) storage, including vacuum packaging have been receiving considerable attention, Although milch research has been done to find optimal conditions for whole intact frui ts and vegetables, only limi ted information is avai lable on fresh cut. and other minimally processed products. 81 iced frui ts exhibi t increas~d ethylene production and respiration compal'ed to whole f, 'uits during distribution in response to tissue damage. As a result, accelerated senescence and enzymatic browning OCCUI', Recent l'esearch on minimally processed fl'uits and vegetables has mainly focused on methods to inhibit browning, due to ban on use of sulfur dioxide, In order to retard or prevent these physiological changes, val'ious al ternatives, reducing agents. acidulants, chelating agents and inol'ganic sal ts have been evaluated for use on fresh cut fl'ui ts. Al though some agents were effective replacement for sulfur dioxide. consum$\textregistered$I'S demandless use of chemical on such products. Shel~ life of minimally processed products has been extended by inhibition of metabolic reactions associated with loss of quality and by inhibition of aerobic spoilage caused by wide variety of microorganisms. Appl ication of ~I.-\ packaging, including vacuum packaging, retards the rate of respiration, prevents growth of aerobic spoilage organisms, inhibits oxidation and color deterioration. Tissue softening is another major problem in minimally processed products because enzymes re 1 a ted to ce 11 wa 11 degrada t i on are not inactivated. Various treatments have been investigated for retardation of the softening of sliced products. Some studies have concentrated on the application of an active packaging system with ~I, l. packaging and calcium infi 1 tration as possible measures to retain firmness of processed products. In my opinion, one important step for production of minimally processed frui ts wi th favorabl e color of cut surface and firm texture is the selection of better cultivar. As the view, changing tendency of fresh color by apple cultivars and relationship between the tendency and PPO activity will be discussed in the seminar. In addition to the topic, research result on quality enhancement of fresh apple slices by heat shock treatment will be introduced.

  • PDF

Identification, Characteristics, and Growth Inhibition of the Strain Isolated from Spoiled Wet Noodle

  • Kim, Hyeong-Hyoi;Jeong, Eun-Jeong;Jeong, Do-Yeong;Kim, Yong-Suk;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2005
  • To determine the cause of wet noodle spoilage, microorganisms isolated from wet noodles were identified and characterized. In addition, the growth inhibitory effects of organic acid mixture (OA: lactic acid 27.8%, acetic acid 12.0%, succinic acid 1.0%) and sodium dehydroacetate (SD) on the isolated strain were estimated in nutrient broth medium. The isolated strain was Gram-positive, rod shaped, motile, and spore forming. Based on physiological characteristics and the API 50 CHB-kit test results for the assimilation of 49 carbohydrates, the isolated strain was identified as Bacillus amyloliquefaciens (92.6%), which is able to degrade starch. Decimal reduction times (D-values) at 100, 105, and $110^{\circ}C$ for spores of B. amyloliquefaciens were 8.5, 5.1, and 2.5 min, respectively, and the z-value was $12.8^{\circ}C$. We estimated that B. amylo-liquefaciens isolated from spoiled wet noodles was a thermophilic species having high heat-resistance. Viable cell numbers in wet noodles and broth medium inoculated with B. amyloliquefaciens were decreased by 2-4 log cycles by combined treatment with 0.03 or 0.05% OA and 0.3% SD. These results revealed that OA combined with SD could be used as a potential agent to inhibit B. amyloliquefaciens in wet noodles.

Monitoring of Microbial Contamination in Air Purifier for Preventing Cross-contamination (교차오염방지를 위한 공기정화제품에서 미생물 오염도 분석)

  • Yeom, Seung-Mok;Kim, Young-Mog;Lee, Myung-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • Many atmospheric pollutants including chemical agents, house dust, and microorganisms cause building-related illnesses through respiration in humans. This study was conducted to analyze the profiles of microbial pollutants in air purifiers used in home, office and playschool. Dominant eleven species of microorganisms were isolated and identified in environmental air and air purifiers. Among them, Staphylococcus sp., Micrococcus sp. and Bacillus sp. are the most dominant species. By phylogenetic analysis of the 16S rRNA gene, the dominant bacteria were identified as Staphylococcus epidermidis, Micrococcus luteus and Bacillus epidermidis, respectively. It has been known that these bacterial species are closely related with food spoilage and human infectious disease. Thus, these results indicate that microbial pathogens related with human illnesses through respiration will be contaminated in air purifiers and also need to develop a method to control those of pathogens for human health.

Radurization of the Microorganisms Contaminated in Beef (우육에 오염된 미생물의 감마선 살균)

  • Yook, Hong-Sun;Kim, Sung;Lee, Kyong-Haeng;Kim, Yeung-Ji;Kim, Jung-Ok;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.212-218
    • /
    • 1999
  • The effects of gamma irradiation (1, 3 and 5 kGy) and packaging methods (air and vacuum) on the growth of microorganisms contaminated in beef was investigated during storage at different temperatures (-20, 4 and $25^{\circ}C$). The initial microbial population of beef was $8.0{\sim}10^2\;CFU/g$ in total aerobic bacteria, $2.0{\times}10^2\;CFU/g$ in total lactic acid bacteria, $8.0{\times}10^1\;CFU/g$ in molds, $6.0{\times}10^2\;CFU/g$ in Pseudomonas sp. and $7.0{\times}10^2\;CFU/g$ in coliforms, respectively. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such dose and subsequent storage at less than $4^{\circ}C$ could ensure hygienic quality prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. The different packaging methods of beef caused negligible changes in the growth of microorganisms during storage.

  • PDF

The Microbiological Assessment and Identification of Food Utensils and Food Service Facilities in School (학교 급식설비 및 집기류의 미생물학적 위해요소 분석)

  • Hong, Seung-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • This study was conducted to evaluate microorganism contamination of food utensils and service facilities in school and to prevent hazards by food poisoning occurrence. As a result, the highest number of microorganism growth plate ($12.3{\pm}2.6$) was detected in total bacteria test plate, and also observed $10.3{\pm}3.9$ growth plates in Staphylococcus aureus test plate and $9.5{\pm}3.9$ growth plates in E. coli and coliform bacteria test plate. But we could detect to the lowest number of growth plates ($1.5{\pm}1.0$) in Vibrio test plate. We also assessed that floors were appeared to the highest microorganism contamination rate in food utensils and service facilities. Therefore, $4.5{\pm}0.6$ growth plates was detected in pre-operation floor and $4.3{\pm}1.0$ growth plates in floor. And high level of microorganism contamination also observed in tables as $3.3{\pm}1.0$ growth plates in cooking table and $3.0{\pm}0.0$ growth plates in dining table. The level of microorganism contamination of food utensils such as kitchen knife, cutting board, and food tray were lower than that in food service facilities. We analysed microorganism contamination according to purpose of use in kitchen knifes and cutting boards. The microorganism contamination rate in fish kitchen knife ($2.0{\pm}0.8$) and fish cutting board ($1.3{\pm}1.5$) were slightly higher than that of others purpose of use. As a result of microorganism identification, various strains of microorganism were contaminated in food service facilities and some strains could detected more than two times. Especially, Staphylococcus aureus was repeatedly identified in cooking table, trench, and kitchen knife. Bacillus cereus was identified in kitchen knife, and then Pseudomonas fluorescens and Pseudomonas aeruginosa were also detected in food utensils and service facilities as known to food spoilage microorganisms. Klebsiella pneumoniae was detected four times repeat, which widely distribute natural environment as normal bacterial flora but sometimes cause acute pneumonia. These results suggest that food utensils and service facilities are contaminated with not only major food poisoning microorganisms such as Staphylococcus aureus, but also food spoilage microorganisms. Taken together, strict personal hygiene control and efficient food service facilities management will be needed to enhance food safety in school feeding and to improve student health.

Effects of the Heat-Treatment on the Nutritional Quality of Milk - I. Historical Development of the Heat-Treatment Technology in Milk - (우유의 열처리가 우유품질과 영양가에 미치는 영향 - I. 우유 열처리 기술의 발달사 -)

  • Jung, Anna;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2016
  • The main purpose of milk heat-treatment is to improve milk safety for consumer by destroying foodborne pathogens. Secondly, heat-treatment of milk is to increase maintaining milk quality by inactivating spoilage microorganisms and enzymes. Pasteurization is defined by the International Dairy Federation (IDF, 1986) as a process applied with the aim of avoiding public health hazards arising from pathogens associated with milk, by heat treatment which is consistent with minimal chemical, physical and organoleptic changes in the product. Milk pasteurization were adjusted to $63{\sim}65^{\circ}C$ for 30 minutes (Low temperature long time, LTLT) or $72{\sim}75^{\circ}C$ for 15 seconds (High temperature short time, HTST) to inactivate the pathogens such as Mycobacterium bovis, the organism responsible for tuberculosis. Ultra-high temperature processing (UHT) sterilizes food by heating it above $135^{\circ}C$ ($275^{\circ}F$) - the temperature required to destroy the all microorganisms and spores in milk - for few seconds. The first LTLT system (batch pasteurization) was introduced in Germany in 1895 and in the USA in 1907. Then, HTST continuous processes were developed between 1920 and 1927. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. At present, UHT is most commonly used in milk production.

Microbial Dynamics of Commercial Makgeolli Depending on the Storage Temperature

  • Kim, Hye-Ryun;Lee, Ae Ran;Kim, Jae-Ho;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1101-1106
    • /
    • 2012
  • Market fresh makgeolli was stored at different temperatures of $4^{\circ}C$ and $25^{\circ}C$ to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at $4^{\circ}C$, and increased from day 6 of storage in the makgeolli stored at $25^{\circ}C$. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at $4^{\circ}C$ and $25^{\circ}C$, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at $4^{\circ}C$, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at $25^{\circ}C$. In particular, in the makgeolli stored at $25^{\circ}C$, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli.

Antimicrobial Activities of Extracts of Perilla Frutescens Briton var. acuta Kudo on Food Spoilage or Foodborne Disease Microorganisms (식품부패 및 병원성 미생물에 대한 자소잎 추출물의 항균효과)

  • 이가순;이주찬;한규흥;오만진
    • Korean Journal of Food Preservation
    • /
    • v.6 no.2
    • /
    • pp.239-244
    • /
    • 1999
  • Antimicrobial activity to the extracts of Perilla frutescens Briton var. acuta Kudo was investigated against various foodborne pathogenes or food poisioning microorganisms(Aspergillus flavus KCTC 6143 and KCTC 6961, Aspergillus niger ATCC 4695, Listeria monocytogenes ATCC 15313, Staphylococcus aureus 196E ATCC 13565, Escherichia coli O157:H7 ATCC 43895, Salmonella typhimurium ATCC 13311 and Yersinia enterocolitica). The ethanol extract of Perilla frutescens Briton var. acuta Kudo was very stable over heat at $121^{\circ}C$ for 15 min. In concentration of $1000\mu\textrm{g}$/mL into culture broth(TSB), the ethanol extract of Perilla frutescens Briton var. acuta Kudo showed the strongest antimicrobial activities against Listeria monocytogenes, followed by Staphylococcus aureus 196E, Salmonella typhimurium. Gram negative bacteria(Escherichia coli O157:H7, Salmonella 쇼phimurium, Yersinia enterocolitica) were less sensitive than Cram positive bacteria but the growth of Escherichia coli O157:H7 and Yersinia exterocolitica were inhibited with increasing concentrations of the extract in culture broth.

  • PDF

Bacteriocin with a Broad Antimicrobial Spectirum, Produced by Bacillus sp. Isolated from Kimchi

  • Mah, Jae-Hyung;Kim, Kwang-Soo;Park, Jong-Hyun;Byun, Myung-Woo;Kim, Young-Bae;Hwang, Han-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.577-584
    • /
    • 2001
  • An antimicrobially active bacterium which was identified as Bacillus brevis, was isolated from kimchi. The antimicrobial activity was found against various Gram-positive and Gram-negative bacteria including some pathogens food-spoilage microorganisms, and some yeast strains. The antimicrobial activity was especially strong against Bacillus anthracis and Shigella dysenteriae. The strong activity was observed during an early stationary phase in the culture when incubated at $37^{\circ}C$ with initial medium pH of 6.8. The antimicrobial activity was found to be stable at $90^{\circ}C$ for 30 min and in the pH range of 3-11, and it was insensitive to organic solvents including acetone, acetonitrile, ethanol, and methanol. Analysis of the bacterocin on tricine-sodium dodecyl sulfate-polyacrylamide gel suggested a molecular mass of approximately 4.5-6.0 kDa. The antimicrobial substance was characterized as a bacteriocin, because of its proteinaceous nature and low molecular weight. The bacteriocin could potentially be used as a food preservative, because of its thermostable property and broad antimicrobial spectrum.

  • PDF