• Title, Summary, Keyword: ginseng by-product

Search Result 211, Processing Time 0.045 seconds

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102

  • Quan, Lin-Hu;Piao, Jin-Ying;Min, Jin-Woo;Kim, Ho-Bin;Kim, Sang-Rae;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.344-351
    • /
    • 2011
  • Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

Bioconversion of Ginsenoside Rd into Compound K by Lactobacillus pentosus DC101 Isolated from Kimchi

  • Quan, Lin-Hu;Cheng, Le-Qin;Kim, Ho-Bin;Kim, Ju-Han;Son, Na-Ri;Kim, Se-Young;Jin, Hyun-O;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Ginsenosides are the principal components responsible for the pharmacological and biological activities of ginseng. Ginsenoside Rd was transformed into compound K using cell-free extracts of food microorganisms, with Lactobacillus pentosus DC101 isolated from kimchi (traditional Korean fermented food) used for this conversion. The optimum time for the conversion was about 72 h at a constant pH of 7.0 and an optimum temperature of about $30^{\circ}C$. The transformation products were identified by thin-layer chromatography and high-performance liquid chromatography, and their structures were assigned using nuclear magnetic resonance analysis. Generally, ginsenoside Rd was converted into ginsenoside F2 by 36 h post-reaction. Consequently, over 97% of ginsenoside Rd was decomposed and converted into compound K by 72 h post-reaction. The bioconversion pathway to produce compound K is as follows: ginsenoside Rd$\rightarrow$ginsenoside F2$\rightarrow$compound K.

Quality Characteristics of Pan Bread containing Red Ginseng Jung Kwa By-Product (홍삼정과 부산물을 첨가한 식빵의 품질 특성)

  • Lee, Eui-Seok;You, Kwan-Mo;Jeong, Young-Nam;Jeon, Byeong-Seon;Ko, Bong-Soo;Hong, Soon-Taek
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1096-1104
    • /
    • 2017
  • This study was carried out to investigate the characteristics of the quality of bread containing Red Ginseng Jung Kwa by-product, added in ratios of 0, 10, 20 and 30% of flour. It was found in dough and bread containing red ginseng Jung Kwa by-product that dough and loaf volume, specific loaf volume, baking loss, and pH decreased with an increasing amount of red ginseng Jung Kwa by-product. In addition, loaf weight and hardness were also reduced. In particular, hardness appeared to be 2.18 times higher for bread containing 30% Red Ginseng Jung Kwa by-product as compared to the amounts found in the control. For color, increasing the amount of Red Ginseng Jung Kwa by-product reduced the L value, whereas the a and b values were increased. In the sensory evaluation, the highest overall preference score was observed in the bread containing 20% red ginseng Jung Kwa by-product, whereas the lowest score was found in the control (no red ginseng Jung Kwa by-product added). It was concluded that pan bread containing red ginseng Jung Kwa by-product could be prepared with good acceptability, and that its optimum concentrate was found to be 20% of flour.

Effects of Ginseng Saponin on the Regu lately Properties of Malate Dehydrogenase from Pigeon Breast Muscle (인삼사포닌이 비둘기 가슴근육으로부터 분리된 Malate Dehydrogenase의 조절기능에 미치는 영향)

  • Kim, Du-Ha;Sin, Mun-Hui;Hong, Sun-Geun
    • Journal of Ginseng Research
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 1983
  • In an endeavour to elucidate effects of ginseng on some characteristics of enzymes, malate dehydrogenase (EC 1.1.1.37) was chosen as a model enzyme and effects of ginseng saponin on the enzyme such as optimum pH, product inhibition, optimum temperature and the activity was investigated. The product inhibition by NADH-a reaction product of the enzyme-was increased 33% by 0.3% ginseng saponin. And the optimum pH of the enzyme was 8.3 but in the presence of 0.3% ginseng saponin it increased to 8.5. The enzyme activity and the optimum temperature was not affected by ginseng saponin in the concentration of 1.0% and 0.3%, respectively. In this work, the possibility of contribution of ginseng saponin to the adaptogen activity is suggested; Potentiation of the regulatory activity of an enzyme may contribute to the normalization of the physiological state and consequently may increase the nonspecific resistance of an organism.

  • PDF

Bioconversion of Ginsenoside Rb1 to Compound K using Leuconostoc lactis DC201

  • Piao, Jin-Ying;Kim, Yeon-Ju;Quan, Lin-Hu;Yang, Dong-Uk;Min, Jin-Woo;Son, Seon-Heui;Kim, Sang-Mok;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.712-718
    • /
    • 2011
  • Ginseng (Panax ginseng) is frequently used in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides. Among these, ginsenoside compound K has been reported to prevent the formation of malignancy and metastasis of cancer by blocking the formation of tumor and suppressing the invasion of cancer cells. In this study, ginsenoside $Rb_1$ was converted into compound K, via secreted ${\beta}$-glucosidase enzyme from the Leuconostoc lactis DC201 isolated, which was extracted from Kimchi. The strain DC201 was suspended and cultured in MRS broth at $37^{\circ}C$. Subsequently, the residue from the cultured broth supernatant was precipitated with EtOH and then dissolved in 20 mM sodium phosphate buffer (pH 6.0) to obtain an enzyme liquid. Meanwhile, the crude enzyme solution was mixed with ginsenoside $Rb_1$ at a ratio of 1:4 (v/v).The reaction was carried out at $30^{\circ}C$ and 190 rpm for 72 hours, and then analyzed by TLC and HPLC. The result showed that ginsenoside Rb1 was transformed into compound K after 72 hours post reaction.

Bioconversion of Ginsenosides in Red Ginseng Extract by Saccharomycescerevisiae and Saccharomyces carlsbergensis (홍삼농축액에서 Saccharomyces cerevisiae와 Saccharomyces carlsbergensis에 의한 Ginsenosides의 bioconversion)

  • Jang, Mi;Min, Jin-Woo;Kim, Ju-Han;Kim, Se-Young;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • /
    • pp.16-16
    • /
    • 2010
  • Ginseng(Panax ginseng C.A. Meyer) is reported to have many pharmaceutical activities. The minor ginsenosides(Rd, Rg3, Rh2 and compound K) display pharmaceutical properties superior to those of the major ginsenosides. These minor ginsenosides, which contribute a very small percentage, are produced by hydrolysis of the sugar moieties of the major ginsenosides. The pH of red ginseng extracts fermented with S. cerevisiae and S. carlsbergensis decreased rapidly during 3 days of fermentation, with no further significant change thereafter. After 20 days of fermentation, a relatively small difference remained in the acidity of extracts fermented with S. cerevisiae (0.54%) and S. carlsbergensis (0.58%). Reducing sugar in the S. cerevisiae and S. carlsbergensis extracts decreased from 25.86 to 4.54 mg/ml and 4.32 mg/ml glucose equivalents, respectively; and ethanol contents increased from 1.5% at day 0 to 16.0 and 15.0%, respectively, at 20 days. Ginsenosides Rb1, Rb2, Rc, Re, Rf, and Rg1 decreased during the fermentation with S. cerevisiae, but Rd and Rg3 increased by 12 days. Ginsenosides Rb1, Rb2, Rc, Re and Rg1 decreased gradually in the extract with S. carlsbergensis, but Rd and Rg3 were increased at 6 days and 9 days.

  • PDF

Present and Future on the Processing of Ginseng (인삼의 가공현황과 전망)

  • 성현순
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.218-232
    • /
    • 1986
  • In this review quality improvement, new products and processing of ginseng are discussed. Ginseng products are generally classified into two types; the dried product without significant change in original shape of fresh ginseng and various processed ginseng products in liquid or solid types prepared by addition of either ginseng extract of ground powder. The dried ginsengs are generally made 4 years old fresh ginseng roots for production of white ginseng and 6 years old ones for red ginseng. The processed ginseng products, such as ginseng drinks, extracts, teas, powders, capsules or tablets are prepared by addition of extract or powder of the ginseng roots which contain relatively high amount of saponin. At present, more than 200 items of 40 types of products are commercially available in over 70 countries in the world, Since consummers preference on the quality of ginseng products as an health food differs with their cultural background of each country, new products development and quality improvement should be investigated with concerning the particular preference of the consummers of various country. It has been generally found that the Orientals has higher product acceptance on strong ginseng flavor while the Westerners generally prefers the products having mild ginseng odor and taste. Recently consummers are asking for supplemented type of ginseng products with various medical herbs and vital materials instead of ginseng alone. Therefore future work on product development should be emphasized to meet the consummers demand and preference.

  • PDF

Molecular identification of Korean ginseng cultivar "Chunpoong" using the mitochondrial nad 7 intron 4 region (Mitochondrial nad 7 intron 4 region을 통한 분자생물학적 고려인삼품종 "천풍"검증)

  • Wang, Hong-Tao;Kim, Min-Kyeoung;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • /
    • pp.15-15
    • /
    • 2010
  • Koran ginseng(Pnax ginseng) is one of the most important medicinal plants in Orient. Among the nine cultivars of Korea ginseng, Chunpoong commands a much greater market value and has been planted widely. A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the mitochondrial nad7 intron 4 region of nine Korea ginseng cultivars using universal primers. A SNP was detected between Chunpoong and other cultivars and modified allele-specific primers were designed from this SNP site to effective method for the geneic identification of the Chunpoong cultivar of ginseng.

  • PDF