• Title, Summary, Keyword: ginsenoside

Search Result 1,239, Processing Time 0.036 seconds

Production of Ginsenoside Rd from Ginsenoside Rc by ${\alpha}-{\small{L}}$-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus

  • Shin, Kyung-Chul;Lee, Gi-Woong;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.483-488
    • /
    • 2013
  • Ginsenoside Rd was produced from ginsenoside Rc using a thermostable recombinant ${\alpha}-{\small{L}}$-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. The optimal reaction conditions for the production of ginsenoside Rd from Rc were pH 5.5, $80^{\circ}C$, 227 U enzyme/ml, and 8.0 g/l ginsenoside Rc in the presence of 30% (v/v) n-hexane. Under these conditions, the enzyme produced 7.0 g/l ginsenoside Rd after 30 min, with a molar yield of 100% and a productivity of 14 g $l^{-1}\;h^{-1}$. The conversion yield and productivity of ginsenoside Rd are the highest reported thus far among enzymatic transformations.

Cytotoxicity of Compound K (IH-901) and Ginsenoside Rh2, Main Biotransformants of Ginseng Saponins by Bifidobacteria, against Some Tumor Cells

  • Shin, Ji-Eun;Park, Eun-Kyung;Kim, Eun-Jin;Hong, Yoon-Hee;Lee, Kyung-Tae;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.129-134
    • /
    • 2003
  • When ginsenoside $R_{*}$b1/ and $R_{b2}$ were anaerobically incubated with human fecal microflora, these ginsenosides were metabolized to compound K (IH-901). When ginsenoside $R_{g3}$ was anaerobically incubated with human fecal microflora, the ginsenoside $R_{g3}$ was metabolized it to ginsenoside $R_{h2}$. Among ginsenosides, IH-901 and 20(S)-ginsenoside $R_{h2}$ exhibited the most potent cyotoxicity against tumor cells: 50% cytotoxic concentrations of IH-901 in the media with and without fetal bovine serum (FBS) were 27.1-31.6 $\mu$M and 0.1-0.61 $\mu$M, and those of 20(S)-ginsenoside $R_{h2}$ were 37.5->50 and 0.7-7.1 $\mu$M, respectively. The cytotoxic potency of ginsenosides was IH-901>20(S)-ginsenoside R $h_{h2}$》20(S)-ginsenoside $R_{g3}$>ginsenoside $R_{b1}$(equation omitted) $R_{b2}$.EX>$R_{b2}$./.

Production of the Convertible Enzyme of Ginsenoside $Rb_1$ by Rhizopus japonicus (Rhizopus japonicus 에 의한 Ginsenoside $Rb_1$ 전환효소의 생산조건)

  • Kim, Sang-Dal
    • The Korean Journal of Mycology
    • /
    • v.17 no.1
    • /
    • pp.31-34
    • /
    • 1989
  • In ginseng saponin, $ginsenoside-Rb_1$ was contained the most abundantly. But ginsenoside-Rd which is similar to ginsenoside $Rb_1$ in structure was known to be superior to $ginsenoside-Rb_1$ pharmaceutically. A strain of Rhizopus japonicus is able to produce the convertible enzyme which can convert selectively $ginsenoside-Rb_1$ to ginsenoside-Rd without the change of any other ginsenoside. The strain can produce the most enzyme after 5 day-culture on wheat bran medium. The enzyme production was promoted best efficiently by addition of red ginseng powder in ginseng products, xylose in sugars, laminarin in polysaccharides, naringin in flavonoids, and potassium nitrate in nitrogen substrates.

  • PDF

Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

  • Chang, Kyung Hoon;Jo, Mi Na;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (b-glucosidase) from A. niger KCCM 11239 hydrolyzed the ${\beta}$-($1{\rightarrow}6$)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing b-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean Red Ginseng Prevent Rotavirus Infection in Newborn Mice

  • Yang, Hui;Oh, Kwang-Hoon;Kim, Hyun Jin;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.391-396
    • /
    • 2018
  • It is well known that Korean red ginseng has various biological activities. However, there is little knowledge about the antiviral activity of Korean red ginseng and its ginsenosides. In this study, we addressed whether oral administration of ginsenoside-Rb2 and -Rg3 is able to protect against rotavirus (RV) infection. The protective effect of ginsenosides against RV infection was examined using an in vivo experiment model in which newborn mice (10-day-old) were inoculated perorally (p.o.) with $1.5{\times}10^6$ plaque-forming units/mouse of RV strain SA11. When various dosages of ginsenoside-Rb2 (25-250 mg/kg) were administered 3days, 2 days, or 1 day before virus challenge, treatment with this ginsenoside at the dosage of 75 mg/kg 3days before virus infection most effectively reduced RV-induced diarrhea. In addition, consecutive administration of ginsenoside-Rb2 (75 mg/kg) at 3 days, 2 days, and 1 day before virus infection was more effective than single administration on day -3. The consecutive administration of ginsenoside-Rb2 also reduced virus titers in the bowels of RV-infected mice. In an experiment to compare the protective activity between ginsenoside-Rb2 and its two hydrolytic products (20(S)- and 20(R)-ginsenoside-Rg3), 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, prevented RV infection. These results suggest that ginsenoside-Rb2 and its hydrolytic product, 20(S)-ginsenoside-Rg3, are promising candidates as an antiviral agent to protect against RV infection.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Purification and Characterization of $Ginsenoside-{\beta}-Glucosidase$

  • Yu Hongshan;Ma Xiaoqun;Guo Yong;Jin Fengxie
    • Journal of Ginseng Research
    • /
    • v.23 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • In this paper, the saponin enzymatic hydrolysis of ginsenoside Rg3 was studied. The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain mainly hydrolyzed the ginsenoside Rg3 to Rh2, the enzyme from FFCDL-00 strain hydrolyzed Rg3 to the mixture of Rh2 and protopanaxadiol (aglycon). The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain was purified with a column of DEAE-Cellulose to one spot in the SDS polyacrylamide gel electrophoresis. During the purification, the enzyme specific acitvity was increased about 10 times. The purified $ginsenoside-{\beta}-glucosidase$ can hydrolyze the Rg3 to Rh2, but do not hydrolyze the $p-nitrophenyl-{\beta}-glucoside$ which is a substrate of original exocellulase such as ${\beta}-glucosidase$ of cellulose. The molecular weight of $ginsenoside-{\beta}-glucosidase$ was 34,000, the optimal temperature of enzyme reaction was $50^{\circ}C,$ and the optimal pH was 5.0.

  • PDF

Ginsenoside Rg$_3$ inhibits NMDA receptors in rat cultured hippocampal neurons: possible involvement of a glycine-binding site

  • Rhim, Hye-Whon
    • Proceedings of the Ginseng society Conference
    • /
    • /
    • pp.7-11
    • /
    • 2004
  • We previously reported that ginseng inhibited NMDA receptors in cultured hippocampal neurons. Here, we further examined the detailed mechanism of ginseng-mediated inhibition using its main active ingredient, ginsenoside Rg$_3$. Co-application of ginsenoside Rg$_3$ with increasing concentrations of NMDA did not change the EC$_{50}$ of NMDA to the receptor, suggesting ginsenoside Rg$_3$ inhibits NMDA receptors without competing with the NMDA-binding site. Ginsenoside Rg$_3$-mediated inhibition also occurred in a distinctive manner from the well-characterized NMDA receptor open channel blocker, MK-801, However, ginsenoside Rg$_3$ produced its effect in a glycine concentration-dependent manner and shifted the glycine concentration-response curve to the right without changing the maximal response, suggesting the role of ginsenoside Rg$_3$ as a competitive NMDA receptor antagonist. We also demonstrated that ginsenoside Rg$_3$ significantly protected neurons against NMDA insults. Therefore, these results suggest that ginsenoside Rg$_3$ protects NMDA-induced neuronal death via a competitive interaction with the glycine-binding site of NMDA receptors in cultured hippocampal neurons.

  • PDF

A Study on the Tonic Effects of Ginseng - Effects of Ginseng Saponins on the Rat Heart (인삼의 강장효과에 관한 연구 - 백서 심장에 대한 인삼사포닌의 효과)

  • 김낙두;김충규;김봉기;한병훈;이상섭
    • YAKHAK HOEJI
    • /
    • v.24 no.1
    • /
    • pp.15-25
    • /
    • 1980
  • The investigation is concerned with the action of ginseng saponin on the contractile force in the rat heart and with the elucidation of the mechanism of the action. The effect of total ginseng saponin, ginsenoside Rb$_{1}$ of protopanaxadiol derivatives and ginsenoside Re of protopanaxatriol derivatives on the contractile force in isolated spontaneously beating normal rat heart was investigated. Total ginseng saponin was obtained from white ginseng by the method of Shibata and Namba. Ginsenoside Rb$_{1}$ and ginsenoside Re were isolated by the method of and Han, respectively. Total ginseng saponin exhibited a slight increase of the contractile force. Ginsenoside Rb$_{1}$ increased markedly the contractile force and dose dependent increase in contractile force was observed. However, ginsenoside Re did not increase the contractile force, but it prevented spontaneous decrease of the contractility of the heart. The mixture of the same dose of ginsenoside Rb$_{1}$ and Re showed a slight increase in the contractile force and its effect was similar to that obtained by total ginseng saponin. Pretreatment with propranolol abolished the positive inotropic effect of ginsenoside Rb$_{1}$ and the positive inotropic effect of ginsenoside Rb$_{1}$ was not observed in a reserpinized rat heart. Pretreatment with ginsenoside Re decreased or abolished the positive inotropic effect of epinephrine. Activities of Na+, K+ -ATPase were inhibited by ginsenoside Rb$_{1}$, total ginseng saponin and ginsenoside Re and these inhibitory effects were dose dependent. The results suggest that catecholamine release or inhibition of Na+, K+ -ATPase activities may be involved in the positive inotropic effect of gindenoside Rb$_{1}$. Ginsenoside Re counteracted the positive inotropic effect of ginsenoside Rb$_{1}$.

  • PDF

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.