• Title, Summary, Keyword: ginsenoside

Search Result 1,239, Processing Time 0.039 seconds

Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

  • Vo, Hoang Tung;Cho, Jae Youl;Choi, Yong-Eui;Choi, Yong-Soon;Jeong, Yeon-Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

Effect of Serial Administration of $Ginsenoside-Rb_2$ on Streptozotocin-diabetic Rats (Streptozotocin 유발 당뇨병성 쥐에대한 $Ginsenoside-Rb_2$의 연속투여 효과)

  • Yokozawa Takako
    • Proceedings of the Ginseng society Conference
    • /
    • /
    • pp.63-69
    • /
    • 1988
  • The effect of $ginsenoside-Rb_2$ purified from ginseng was examined in rats with streptozotocin-induced diabetes. The rats of the $ginsenoside-Rb_2-treated$ group showed a significant decrease in blood glucose level as well as a significant decrease of glucose-6-phosphatase in the liver. whereas a significants rise was observed in the activity of glucokinase. Furthermore, the rats treated with $ginsenoside-Rb_2$ showed a significant decrease of glucose and a slight increase of glycogen in the hepatic tissue. The glucose-6-phosphate level tended to increase, the pyruvate level was unchanged and the lactate level tended to decrease. There was, however. no accumulation of total lipid in hepatic tissue. The serum levels of triglyceride. non-esterified fatty acid. 3-hydroxybutyrate and acetoacetate were markedly decreased, showing a trend toward restoration of the normal state and inducing. an increase in lipids in the adipose tissue. Additional experiments involving long-term administration of $ginsenoside-Rb_2$ produced results suggesting that $ginsenoside-Rb_2$ may improve diabetic symptoms such as overeating, overdrinking. polyuria and glycosuria.

  • PDF

Effects of Jasmonic Acid and Benzoic Acid on Ginsenoside Production in Suspension Cultures of Panax ginseng C.A. Meyer (인삼세포 배양에서 쟈스몬산과 안식향산이 Ginsenoside 생산에 미치는 영향)

  • 변상요;유병삼
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.110-113
    • /
    • 2002
  • Studies were made to examine the various effects of jasmonic acid and benzoic acid on ginsenoside production in suspension cultures of Panax ginseng C. A. Meyer. Jasmonic acid increased the ginsenoside production when it was dosed at the concentration of 50 $\mu$M or higher. The cell growth, however, was reduced with jasmonic acid. When benzoic acid was dosed simultaneously with iasmonic acid, the ginsenoside production increased 9.6 folds. It was 2.2 times higher than the result of single dose of jasmonic acid.

Ginsenoside Rb$_1$ Reduces Spontaneous Bursting Activity in Thalamocortical Slices of the Rat

  • Yang, Sung-Chil;Lee, Sang-Hun;Park, Jin-Kyu;Jung, Min-Whan;Lee, Chang-Joong
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.134-137
    • /
    • 2000
  • Spontaneous bursting activity was studied in rat thalamocortical slices using extracellular field potential recording to test the potential utilization of ginsenoside Rb$_1$ in controlling overactivated neural systems. In order to induce bursting activity, slices were perfused with Mg$\^$2+/-free artificial cerebrospinal fluid (ACSF). Two major types of spontaneous bursting activity, simple thalamocortical burst complexes (sTBCs) and complex thalamocortical burst complexes (cTBCs), were recorded in Mg$\^$2+/ -free ACSF. Ginsenoside Rb$_1$ selectively suppressed cTBCs. Duration and occurrence rate of cTBCs were reduced by 87.3${\pm}$10.2% and 85.3${\pm}$ 14.7% in the presence of 90 ${\mu}$M ginsenoside Rb$_1$ respectively, while amplitude and intraburst frequency were slightly changed by ginsenoside Rb$_1$. In contrast, ginsenoside Rb$_1$was much less effective in reducing duration and occurrence rate of sTBCs. We also tested effects of ginsenoside Rb$_1$ on bursting activity in the presence of a GABA$\sub$A/ receptor antagonist, bicuculline methiodide (BMI). Ginsenoside Rb$_1$ had no effect in suppressing BMI-induced bursting activities. These results suggest that ginsenoside Rbi may be useful in controlling seizure-like bursting activity under pathological conditions.

  • PDF

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis THK-D57에 의한 인삼 사포닌의 생물학적 전환)

  • Yi, Eun-Ji;Lee, Jung-Min;Yi, Tae-Hoo;Cho, Seok-Cheol;Park, Yong-Jin;Kook, Moo-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.629-636
    • /
    • 2012
  • Ginsenosides, ginseng saponin, are the principal components responsible for the pharmacological and biological activities of ginseng. In order to improve absorption and biological activities, the biotransformation of major ginsenoside to minor ginsenoside, as the more active compound, is required. In this study, we isolated Lactobacillus brevis THK-D57, which has high ${\beta}$-glycosidase activity, from Kimchi. The major ginsenoside Rb1 was converted to the minor ginsenoside 'compound K' during the fermentation of L. brevis THK-D57. The results propose that the biotransformation pathway to produce compound K is as follows: ginsenoside $Rb_1{\rightarrow}ginsenoside$ $Rd{\rightarrow}ginsenoside$ $F_2{\rightarrow}ginsenoside$ compound K.

Production of ginsenoside F1 using commercial enzyme Cellulase KN

  • Wang, Yu;Choi, Kang-Duk;Yu, Hongshan;Jin, Fengxie;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2016
  • Background: Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods: To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and $50^{\circ}C$. Results: Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and $50^{\circ}C$ for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with $91.5{\pm}1.1%$ chromatographic purity. Conclusion: The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.

Identification of Ginseng Saponin and Quantitative Determination of $Ginsenoside-Rb_1$ from Crude Drug Preparation Drink (생약복방제 드링크중 인삼 saponin의 확인 및 $Ginsenoside-Rb_1$의 분리 정량)

  • 최강주;고성룡
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.112-116
    • /
    • 1990
  • As a part of studies on the quality control of crude drug preparation drinks, ginseng saponins were identified by HPLC. Ginsenoside-Rb1 was determined quantitatively by HPLC. Ginsenoside MeOH/H2O(65:35:10, v/v) on Si-gel plate. Ginsenoside-Rb1 content determined by HPLC on Lichrosorbtract drinks was 57.5-70.4% compared to the content in the red ginseng extract.

  • PDF

Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng (인삼.산양삼.자연산 산삼의 ginsenoside 함량 분석 및 홍삼화 후의 변화 관찰)

  • Jeong, H.S.;Lim, C.S.;Cha, B.C.;Choi, S.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, cultivated wild ginseng, and wild ginseng through component analysis, and to know the change of ginsenoside components in the process for making red ginseng. Methods: Comparative analysis of ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, Re, Rf, $Rg_1,\;Rg_3,\;Rh_1$ and $Rh_2$ from the cultivated ginseng 4 and 6 years, cultivated wild ginseng, and wild ginseng were conducted using High Performance Liquid Chromatography(hereafter HPLC). And the same analyses were conducted in the process of red ginseng. Results: 1. For content comparison of ginsenoside $Rb_1$, Rc, Rd, Rf, $Rg_1$ and $Rh_1$, wild ginseng showed high content, followed cultivated ginseng 4 and 6 years, cultivated wild ginseng showed low content than any other samples. 2. For content comparison of ginsenoside $Rb_2$ and Re, cultivated ginseng 4 years showed high content, followed wild ginseng and cultivated ginseng 6 years, cultivated wild ginseng showed low content than any other samples. 3. For content comparison of ginsenoside $Rg_3$, wild ginseng and cultivated wild ginseng were only showed low content. 4. For content comparison of ginsenoside $Rh_2$, cultivated wild ginseng was only showed low content. 5. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, $Rg_3$ and $Rh_1$ were increased, and ginsenoside Re and $Rg_1$ were decreased in cultivated wild ginseng. 6. In the process of red ginseng, ginsenoside $Rg_3$ and $Rh_1$ were increased, and ginsenoside $Rb_2$, Rc, and Re were decreased in cultivated ginseng 4 years. 7. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rf and $Rh_1$ were increased, and ginsenoside Rc and Rd were decreased in cultivated ginseng 6 years. Conclusions: Distribution of ginsenoside contents to the cultivated ginseng, cultivated wild ginseng, and wild ginseng was similar and was not showed special characteristics between samples. And the change of ginsenoside to the process of red ginseng, cultivated ginseng and cultivated wild ginseng were showed different aspect.