• Title, Summary, Keyword: ginsenosides

Search Result 862, Processing Time 0.067 seconds

Salting-out extraction of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium based on ethanol/sodium carbonate system

  • Wei, Yingqin;Hou, Baojuan;Fang, Haiyan;Sun, Xinjie;Ma, Feng
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Background: Salting-out extraction (SOE) had been developed as a special branch of aqueous two-phase system recently. So far as we know, few reports involved in extracting ginsenosides with SOE because of the lower recovery caused by the unique solubility and surface activity of ginsenosides. A new SOE method for rapid pretreatment of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium was established in this article. Methods: The SOE system comprising ethanol and sodium carbonate was selected to extract ginsenosides from the enzymatic hydrolysates of Panax quinquefolium, and HPLC was applied to analyze the ginsenosides. Results: The optimized extraction conditions were as follows: the aqueous two-phase extraction system comprising ethanol, sodium carbonate, ethanol concentration of 41.51%, and the mass percent of sodium carbonate of 7.9% in the extraction system under the experimental condition. Extraction time had minor influence on extraction efficiency of ginsenosides. The results also showed that the extraction efficiencies of three ginsenosides were all more than 90.0% only in a single step. Conclusion: The proposed method had been successfully applied to determine ginsenosides in enzymatic hydrolysate and demonstrated as a powerful technique for separating and purifying ginsenosides in complex samples.

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Ammonia as Extractant and Reactant for Ginsenosides

  • Cho In-Ho;Hohaus Eberhard;Lentz Harro
    • Proceedings of the Ginseng society Conference
    • /
    • /
    • pp.486-490
    • /
    • 2002
  • In different approaches ginsenosides were extracted from Korean ginseng roots by ammonia and for comparison with methanol-water and water. The extracts have been analyzed qualitatively and quantitatively to evaluate yield and selectivity of extractions of ginsenosides. Water supplied the lowest yield. The yields of extracts with liquid ammonia were higher than those with methanol-water. However, this is partly due to the conversion of malonyl ginsenoside to normal ginsenosides by ammonia. It was proved by HPLC that malonyl-ginsenosides $m-Rb_1,\;m-Rb_2,$ m-Rc and m-Rd were converted to the corresponding neutral ginsenosides. Furthermore, ginsenosides from ginseng roots were extracted by alkaline methanol-water $(60\%)$ solutions. Alternatively, the extracts of the methanol-water $(60\%)$ extraction were treated with sodium hydroxide solution. Both methods also convert the malonyl-ginsenosides to neutral ginsenosides.

  • PDF

An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L.

  • Yao, Hua;Li, Xuwen;Liu, Ying;Wu, Qian;Jin, Yongri
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • Background: Rare ginsenosides in Panax quinquefolius L. have strong bioactivities. The fact that it is hard to obtain large amounts of rare ginsenosides seriously restricts further research on these compounds. An easy, fast, and efficient method to obtain different kinds of rare ginsenosides simultaneously and to quantify each one precisely is urgently needed. Methods: Microwave-assisted extraction (MAE) was used to extract nine kinds of rare ginsenosides from P. quinquefolius L. In this article, rare ginsenosides [20(S)-Rh1, 20(R)-Rh1, Rg6, F4, Rk3, 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5] were identified by high performance liquid chromatography (HPLC)-electrospray ionization-mass spectrometry. The quantity information of rare ginsenosides was analyzed by HPLC-UV at 203 nm. Results: The optimal conditions for MAE were using water as solvent with the material ratio of 1:40 (w/v) at a temperature of $145^{\circ}C$, and extracting for 15 min under microwave power of 1,600 W. Seven kinds of rare ginsenosides [20(S)-Rh1, 20(R)-Rh1, Rg6, F4, Rk3, Rk1, and Rg5] had high extraction yields, but those of 20(S)-Rg3 and 20(R)-Rg3 were lower. Compared with the conventional method, the extraction yields of the nine rare ginsenosides were significantly increased. Conclusion: The results indicate that rare ginsenosides can be extracted effectively by MAE from P. quinquefolius L. in a short time. Microwave radiation plays an important role in MAE. The probable generation process of rare ginsenosides is also discussed in the article. It will be meaningful for further investigation or application of rare ginsenosides.

Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes

  • Cui, Lei;Wu, Song-quan;Zhao, Cheng-ai;Yin, Cheng-ri
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.366-374
    • /
    • 2016
  • Background: In this study, we screened and identified an endophyte JG09 having strong biocatalytic activity for ginsenosides from Platycodon grandiflorum, converted ginseng total saponins and ginsenoside monomers, determined the source of minor ginsenosides and the transformation pathways, and calculated the maximum production of minor ginsenosides for the conversion of ginsenoside Rb1 to assess the transformation activity of endophyte JG09. Methods: The transformation of ginseng total saponins and ginsenoside monomers Rb1, Rb2, Rc, Rd, Rg1 into minor ginsenosides F2, C-K and Rh1 using endophyte JG09 isolated by an organizational separation method and Esculin-R2A agar assay, as well as the identification of transformed products via TLC and HPLC, were evaluated. Endophyte JG09 was identified through DNA sequencing and phylogenetic analysis. Results: A total of 32 ${\beta}$-glucosidase-producing endophytes were screened out among the isolated 69 endophytes from P. grandiflorum. An endophyte bacteria JG09 identified as Luteibacter sp. effectively converted protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd into minor ginsenosides F2 and C-K, and converted protopanaxatriol-type ginsenoside Rg1 into minor ginsenoside Rh1. The transformation pathways of major ginsenosides by endophyte JG09 were as follows: $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$; $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$; $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$; $Rg1{\rightarrow}Rh1$. The maximum production rate of ginsenosides F2 and C-K reached 94.53% and 66.34%, respectively. Conclusion: This is the first report about conversion of major ginsenosides into minor ginsenosides by fermentation with P. grandiflorum endophytes. The results of the study indicate endophyte JG09 would be a potential microbial source for obtaining minor ginsenosides.

New Efficient Method for Isolation and Purification of Ginsenosides (Ginsenoside의 새로운 분리.정제 방법)

  • 김세원;황석연
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.284-288
    • /
    • 1998
  • This study was carried out to establish a new efficient method for isolation and purification of ginsenosides. Silica gel column chromatography, having been used for the isolation of ginsenosides, is advantageous to obtain a large amount of ginsenosides. However, it has a disadvantage to isolate ginsenosides to their highest purity. In addition, normal-or reverse-phase HPLC method thus far reported is confined to quantitative analysis. Especially, it has not been possible to isolate racemic 20(S)- and 20(R)-ginsenoside Rg2. In this experiment, isolation and purification of ginsenosides were accomplished by Diaion HP-20 adsorption chromatography, silica gel column chromatography, recrystalization and Prep. HPLC with or without Prep. TLC. From this study, we could establish a new efficient method for isolation and purification of 9 major and/or minor ginsenosides.

  • PDF

Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria

  • Park, Seong-Eun;Na, Chang-Su;Yoo, Seon-A;Seo, Seung-Ho;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Background: Some differences have been reported in the biotransformation of ginsenosides, probably due to the types of materials used such as ginseng, enzymes, and microorganisms. Moreover, most microorganisms used for transforming ginsenosides do not meet food-grade standards. We investigated the statistical conversion rate of major ginsenosides in ginsenosides model culture during fermentation by lactic acid bacteria (LAB) to estimate possible pathways. Methods: Ginsenosides standard mix was used as a model culture to facilitate clear identification of the metabolic changes. Changes in eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and Rg2) during fermentation with six strains of LAB were investigated. Results: In most cases, the residual ginsenoside level decreased by 5.9-36.8% compared with the initial ginsenoside level. Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased during fermentation. By contrast, Rd was maintained or slightly increased after 1 d of fermentation. Rg1 and Rg2 reached their lowest values after 1-2 d of fermentation, and then began to increase gradually. The conversion of Rd, Rg1, and Rg2 into smaller deglycosylated forms was more rapid than that of Rd from Rb1, Rb2, and Rc, as well as that of Rg1 and Rg2 from Re during the first 2 d of fermentation with LAB. Conclusion: Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased, whereas ginsenosides Rd, Rg1, and Rg2 increased after 1-2 d of fermentation. This study may provide new insights into the metabolism of ginsenosides and can clarify the metabolic changes in ginsenosides biotransformed by LAB.

Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng

  • Kim, Jeon-Kyung;Choi, Min Sun;Jeung, Woonhee;Ra, Jehyeon;Yoo, Hye Hyun;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.611-618
    • /
    • 2020
  • Background: It is well recognized that gut microbiota is involved in the biotransformation of ginsenosides by converting the polar ginsenosides to nonpolar bioactive ginsenosides. However, the roles of the gut microbiota on the pharmacokinetics of ginsenosides in humans have not yet been fully elucidated. Methods: Red ginseng (RG) or fermented red ginseng was orally administered to 34 healthy Korean volunteers, and the serum concentrations of the ginsenosides were determined using liquid chromatography-tandem mass spectrometry. In addition, the fecal ginsenoside Rd- and compound K (CK)eforming activities were measured. Then, the correlations between the pharmacokinetic profiles of the ginsenosides and the fecal ginsenoside-metabolizing activities were investigated. Results: For the RG group, the area under the serum concentratione-time curve values of ginsenosides Rd, F2, Rg3, and CK were 8.20 ± 11.95 ng·h/mL, 4.54 ± 3.70 ng·h/mL, 36.40 ± 19.68 ng·h/mL, and 40.30 ± 29.83 ng·h/mL, respectively. For the fermented red ginseng group, the the area under curve from zero to infinity (AUC∞) values of ginsenosides Rd, F2, Rg3, and CK were 187.90 ± 95.87 ng·h/mL, 30.24 ± 41.87 ng·h/mL, 28.68 ± 14.27 ng·h/mL, and 137.01 ± 96.16 ng·h/mL, respectively. The fecal CK-forming activities of the healthy volunteers were generally proportional to their ginsenoside Rd-eforming activities. The area under the serum concentration-time curve value of CK exhibited an obvious positive correlation (r = 0.566, p < 0.01) with the fecal CK-forming activity. Conclusion: The gut microbiota may play an important role in the bioavailability of the nonpolar RG ginsenosides by affecting the biotransformation of the ginsenosides.

Growth and Ginsenosides Production of Hairy Root (Panax ginseng C.A. Meyer) via Light Energy (인삼 모상근의 성장 및 Ginsenosides 생성에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.318-324
    • /
    • 1996
  • The effects of light on the growth and ginsenosides production were examined in the hairy roots of Panax ginsen C.A. Meyer induced by Agrobacterium rhizogines A4. The 9rowth of ginseng hairy roots in 1/2MS liquid medium was significantly decreased with an increment of light intensity (1,000~7,000 lux). The growth of hairy roots under 7,000 lux condition was decreased at 17% compared to the dark condition. The production of 7 ginsenosides in hairy root was very high in 3,500 lux condition. The production of ginsenoside-Rg, and Rf increased 3.3 and, 2.4 times respectively as compared to dark condition. The growth of hairy roots was inhibited by blue light, while ginsenosides production was increased. The sucrose demands of hairy roots was examined in light condition(3,500 lux). The growth of hairy roots in 1/2MS liquid medium with various sucrose concentrations(1~4%) was high in IVp sucrose, while ginsenosides production was high in 3% sucrose condition. The growth and ginsenosides production were high when hairy roots were cultured in dark condition for 1 week and then transferred to light condition(3,500 lux) for 4 weeks. It is suggested that ginsenosides production could be accelerated by light intensity of specific wavelength in cultures of ginseng hairy roots.

  • PDF

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.