• Title, Summary, Keyword: glucosamine

Search Result 253, Processing Time 0.054 seconds

Rheological Behavior of Glucosamine and Glucosamine Hydrochloride Suspensions under DC Electric Field

  • Kong, Sung-Wook;Kim, Seung-Wook;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.35-37
    • /
    • 2007
  • The electrorheological behavior of the glucosamine and glucosamine hydrochloride suspensions was investigated. The the glucosamine suspension behaved as a Newtonian fluid due to low conductivity even though it has polar group. The glucosamine hydrochloride suspension behaved as a Nonnewtonian fluid under the application of the electric field. The shear stress of the glucosamine hydrochloride suspension is proportional to 1.86 power of the electric field. The value of the structure factor, $A_s$ was 1 and it may be resulted due to the formation of single chain upon application of the electric field.

Glucosamine Inhibits Lipopolysaccharide-induced Inflammatory Responses in Human Periodontal Ligament Fibroblasts

  • Kim, Eun Dam;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Glucosamine is commonly taken by the elderly without prescription as a nutritional supplement to attenuate the progression or symptoms of osteoarthritis. Previous studies demonstrated that glucosamine shows anti-inflammatory effects in tissues such as blood vessels and the heart. However, there have been few reports about the effects of glucosamine on oral inflammatory diseases. Therefore, in this study, the effects of glucosamine on lipopolysaccharide (LPS)-induced inflammatory responses were investigated using human periodontal ligament fibroblasts (HPDLFs). HPDLFs were incubated in the presence and absence of glucosamine (10 mM) for 24 h, followed by treatment with E. coli LPS (100 ng/ml) or vehicle. Quantitative RT-PCR and ELISA results showed that LPS exposure significantly increased the levels of IL-6 and IL-8 mRNA and protein, while the effect was significantly suppressed by glucosamine treatment. Glucosamine did not attenuate, but slightly increased, the LPS-induced activation of mitogen activated kinases (ERK, p38, JNK). However, it suppressed the LPS-induced increase in the DNA binding affinity and transcriptional activity of NF-${\kappa}B$. These results suggest that glucosamine exerts anti-inflammatory effects on HPDLFs exposed to LPS via inhibition of NF-${\kappa}B$ activity, necessitating further studies using animal periodontitis models.

Effect of Antimicrobial Activity of the Glutaraldehyde Cross-linked Glucosamine (글루코사민-글루타르알데히드 가교결합체의 항균 효과)

  • Lee, Choon Geun;Hwang, You Jin;Park, Jae Kweon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.53-61
    • /
    • 2014
  • This study was investigated the antimicrobial activity of glutaraldehyde cross-linked glucosamine. Glutaraldehyde was used as a cross-linker which specifically combines an amine-group of molecules. To optimize the mixing ratio of glutaraldehyde and glucosamine, mixing ratio was set up 1:1, 2:1, 3:1 and 0.5:1 in molarity, respectively. The optimum mixing ratio of glucosamine and glutaraldehyde was found to be 3:1 using thin layer chromatography based on the production of complex. Glucosamine-glutaraldehyde cross-linked complex (Ggcc) revealed significant antimicrobial activity toward PWG than F1, both microbial strains were isolated from porcine semen as antibiotics resistance bacteria (ARB). These results clearly demonstrate that Ggcc has potential bactericidal activity toward ARB in porcine semen.

β-glucan and glucosamine contents in various cereals cultured with mushroom mycelia (버섯균사체를 배양시킨 몇 종의 곡물 중 베타글루칸과 glucosamine 함량)

  • Lee, Hui-Deok;Lee, Ga-Soon
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • Mycelia of Pleurotus ostreatus, Phellinus linteus, Ganoderma lucidum and Lentinus edodes were cultured in the selected cereals to generate functionally active cereals. The optimum water contents for the mycelial growth were 50%(wt/wt) for brown rice, barley and soybean and 75% for wheat and corn, respectively. P. ostreatus grew well in the most cereals while the mycelial growth of P. linteus, G. lucidum and L. edodes in soybean were siginificantly retarded. The contents of β-glucan and glucosamine in the mycelial cereals were determined. Wheat cultured with mushroom mycelia showed high ß-glucan content. Especially, wheat with G. lucidum contained the highest value of 26.16%. Soybean cultured with G. lucidum showed two-fold increase in glucosamine content with 9.63% of total mass while wheat showed 7.91%. Overall, wheat cultured with G. lucidum was the best functional cereal in terms of β-glucan and glucosamine contents.

Comparison of Colorimetry and HPLC Method for Quantitative Analysis of Chitooligosaccharide (키토올리고당의 측정법으로 비색법과 HPLC법의 비교)

  • Kang, Kil-Jin;Cho, Jung-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.788-791
    • /
    • 2000
  • The quantitative analysis of chitooligosaccharide was compared to using colorimetry and HPLC method. HPLC method required less than 10mins per sample in analytical time of glucosamine and its the recovery rate was 98.4% (10 mg/ml, w/v). Also there was no the effects of interfering substances(false positive response) by HPLC method. The content of chitooligosaccharide in processed chitooligosaccharide products obtained using HPLC showed lower levels compared to colorimetry. Thus, HPLC method was more sensitive, effective and precise than the colorimetry currently used to determine the glucosamine of chitooligosaccharide.

  • PDF

Studies on Glycolipids in Bacteria -Part II. On the Structure of Glycolipid of Selenomonas ruminantium- (세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제2보(第二報) Selenomonas ruminantium의 당지질(糖脂質)의 구조(構造)-)

  • Kim, Kyo-Chang
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 1974
  • The chemical structure of glycolipid of Selenomonas ruminantium cell wall was to be elucidated. The bacterial cells were treated in hot TCA and the glycolipid fractions were extracted by the solvent $CHCl_3\;:\;CH_3OH$ (1 : 3). The extracted glycolipids fraction was further separated by acetone extraction. The acetone soluble fraction was named as the spot A-compound. The acetone insoluble but ether soluble fraction was named as the spot B-compound. These two compounds were examined for elucidation of their chemical structure. The results were as follows: 1. The IR spectral analysis showed that O-acyl and N-acyl fatty acids were linked to glucosamine moiety in the spot A-compound. However in the spot B-compound in addition to O and N-acyl acids phosphorus was shown to be attached to glucosamine. 2. It was recognized by gas liquid chromatography that spot A compound contained beta-OH $C_{13:0}$ fatty acid in predominance in addition to the fatty acid with beta-OH $C_{9:0}$, whereas the spot B compound was composed of the predominant fatty acid of beta-OH $C_{13:0}$ with small amount of beta-OH $C_{9:0}$. 3. According to the paper chromatographic analysis of hydrazinolysis products of the spot A compound, a compound of a similar Rf value as the chitobiose was recognized, which indicated a structure of two molecules glucosamine condensed. The low Rf value of the hydrazinolysis product of the spot B-compound confirmed the presence of phosphorus attached to glucosamine. 4. The appearance of arabinose resulting from. ninhydrin decomposition of the acid hydrolyzate of the spot A compound indicated that the amino group is attached to $C_2$ of glucosamine. 5. The amount of glucosamine in the N-acetylated spot A compound decreased in half of the original content by the treatment. with $NaBH_4$, indicating that there are two molecules of glucosamines in the spot A compound. The presence of 1, 6-linkage between two molecules of glucosamine was suggested by the Morgan-Elson reaction and confirmed by the periodate decomposition test. 6. By the action of ${\beta}-N-acetyl$ glucosaminidase the N-acetylated spot A compound was completely decomposed into N-acetyl glucosamine, whereas the spot B compound was not. This indicated the spot A compound has a beta-linkage. 7. When phosphodiesterase or phosphomonoesterase acted on $^{32}P-labeled$ spot B compound, $^{32}P$ was not released by phosphodiesterase, but completely released by phosphomonoesterase. This indicated that one phosphorus is linked to glucosamine moiety. 8. The spot A compound is assumed to have the following chemical structure: That is glucosaminyl, ${\beta}-1$, 6-glucosamine to which O-acyl and N-acyl fatty acids are linked, of which the predominant fatty acid is beta-OH $C_{13:0}$ fatty acid in addition to beta-OH $C_{9:0}$ fatty acid 9. The spot B compound is likely to have the linkage of $glucosaminyl-{\beta}-1$, 6-glucosamine to which phosphorus is linked in monoester linkage. Furthermore both O-acyl and N-acyl fatty acids contained beta-OH $C_{13:0}$ fatty acid predominantly in addition to beta-OH $C_{9:0}$ fatty acid.

  • PDF

Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

  • LEE HYUN-JIN;PARK KEUN-HYUNG;SHIM JAE-HAN;PARK RO-DONG;KIM YONG-WOONG;CHO JEUNG-YONG;HWANGBO HOON;KIM YOUNG-CHEOL;CHA GYU-SUK;KRISHNAN HARI B.;KIM KIL-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1073-1079
    • /
    • 2005
  • To investigate plant protection, pathogenesis-related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by $53\%$ in pepper roots when preinoculated with B. subtilis HJ927 against P. capsici. The activities of PR proteins (chitinase and ${\beta}$-1,3,-glucanase) and defense-related enzymes (peroxidase, polyphenoloxidase, and phenylalanine ammonia lyase) decreased in roots of B. subtilis+P capsid-treated plants, but increased in leaves with time. The decrease and increase were much greater in P. capsici-treated plants than in B. subtilis HJ927+P capsici-treated plants, although P. capsici-treated plants had more severe damage. Therefore, changes of enzyme activities do not seem to be directly related to plant protection. We suggest that the change of these enzymes in pathogen-treated plants may be related to plant response rather than to resistance against pathogen attacks.

Metabolic Engineering of Corynebacterium glutamicum for N-acetylglucosamine Production (N-아세틸글루코사민 생산을 위한 코리네박테리움 글루타미컴의 대사공학)

  • Kim, Jin-Yeon;Kim, Bu-yeon;Moon, Kyung-Ho;Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.78-86
    • /
    • 2019
  • Recombinant Corynebacterium glutamicum producing N-acetylglucosamine (GlcNAc) was constructed by metabolic engineering. To construct a basal strain producing GlcNAc, the genes nagA, nagB, and nanE encoding N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, and N-acetylmannosamine-6-phosphate epimerase, respectively, were sequentially deleted from C. glutamicum ATCC 13032, yielding strain KG208. In addition, the genes glmS and gna1 encoding glucosamine-6-phosphate synthase and glucosamine-6-phosphate N-acetyltransferase, which originated from C. glutamicum and Saccharomyces cerevisiae, respectively, were expressed in several expression vectors. Among several combinations of glmS and gna1 expression, recombinant cells expressing glmS and gna1 under control of the ilvC promoter produced 1.77 g/l of GlcNAc and 0.63 g/l of glucosamine in flask cultures.