• Title, Summary, Keyword: glutathione S-transferase

Search Result 825, Processing Time 0.035 seconds

Effects of Corn Oil, Perilla Oil, Sardine Oil Diet on the Hepatic Glutathione S-transferase(GST-P) Positive Foci and Glutathione Related Enzyme System in Carcinogen Treated Rats (옥수수유, 들깨유, 정어리유의 급여가 발암물질의 투여한 쥐 간의 Glutathione S-transferase(GST-P) 양성결절과 Glutathione 관련 효소계에 미치는 영향)

  • Kim, Kyung-Min
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.276-284
    • /
    • 2010
  • The effects of different dietary fatty acids on the hepatic glutathione S-transferase(GST-P) positive foci and glutathione related enzyme system were investigated in carcinogen treated rats. Weaning male Sprague Dawley rats were divided into three groups and fed the diets of 15% corn(CO), perilla(PO), and sardine oil(SO), respectively. Hepatocellular carcinogenesis was initiated with diethylnitrosamine(DEN) and then fed the diet containing 0.02% 2-acetylaminofluorene(2-AAF) followed by 0.05% phenobarbital for 10 weeks. The hepatic tissues were homogenized and centrifugated to prepare microsomal and cytosolic fractions. The enzyme activities of hepatic glutathione S-transferase(GST), glutathione reductase(GR), and glutathione peroxidase(GPx) were determined from cytosolic fractions. The number of GST-P hyperplastic nodules was the highest in corn oil group at 6th week, the early stage of hyperplastic nodule formation. GST activities were increased significantly by carcinogens in all dietary groups after 6th wk. GR activities followed the same trend as GST activities. GPx activities were decreased by carcinogens in all dietary groups at 10th week. In this experiment, corn oil diet may have promotive effect on hyperplastic nodule formation during the early promotional stages of chemical carcinogenesis.

Protective Effect of Diallyl Disulfide on Ethacrynic Acid-Inducted Toxicity in Mice

  • Huh, Keun;Lee, Sang-Il;Song, Jae-Woong
    • Archives of Pharmacal Research
    • /
    • v.10 no.3
    • /
    • pp.149-152
    • /
    • 1987
  • The present work was undertaken to investigate the effect of diallyl disulfide on ethacrynic acid toxicity. Ethacrynic acid-induced morality and formation of lipid peroxide were inhibited by diallyl disulfide. Furthermore, decreasing effect of glutathione S-transferase and glutathione level in the liver by ethacrynic acid were reduced by diallyl disulfide. These results suggested that the inducing effect of diallyl disulfide on the ethacrynic acid metabolizing enzyme, glutathione S-transferase, is believed to be a possible detoxication mechanism for the ethacrynic acid toxicity in mice.

  • PDF

Effect of GE-132 on the Hepatic Bromobenzene Metabolizing Enzyme System in Rats (유기게르마늄(GE-132)이 Bromobenzene의 대사계에 미치는 영향)

  • 김석환;조태현;최종원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.702-708
    • /
    • 1993
  • The study was attempted to elucidate the mechanism of GE-132(100mg/kg, p.o. for 6 weeks) on the metabolism of bromobenzene (460mg/kg, i.p. bid, for 2 days), which has potent carcinogenicity, mutagenicity and hepatotoxicity. It showed that activities of cytochrome p-450, aminopyrine demethylase and aniline hydroxylase, which have epoxide generating property, were not changed by GE-132 treatment. On the other hand, epoxide hydrolase was not changed but that glutathione S-transferase was significantly increased by GE-132 treatment. And also ${\gamma}-glutamylcysteine$ synthetase was not changed following the GE-132 treatment, but the activity of glutathione reductase was significantly increased. The level of hepatic glutathione which was decreased by bromobenzene recovered markedly by GE-132 pretreatment. It is concluded that the mechanism for the observed effect of GE-132 on bromobenzene metabolism is due to the induction of glutathione S-transferase.

  • PDF

Suppressive Effects of Vitamin E on the Induction of Placental Glutathione S-transferase(GST-P) Positive foci and Antioxidant Enzyme Activity in Rat Hepatocarcinogenesis (비타민 E가 쥐간 세포의 암화과정에서 태반형 Glutathione S-transferase(GST-P) 양성 병소와 항산화요소계에 미치는 영향)

  • 최혜미
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.803-812
    • /
    • 1997
  • The influences of dietary supplements of vitamin E on hepatocellular chemical carcinogenesis have been studied, Placental glutathione S-transferase(GST-P) positive foci area, antioxidant enzymes(superoxide dismutase(SOD), catalase, glutathione reductase, glutathione peroxidase, glutathione S-transferase(GST)), glucose 6-phosphatase(G6Pase) activities, and lipid peroxidation of mecrosomes(thiobarbituric acid reactive substances(TBARS) contents) were investigated. For is purpose , we used the murine chemical hepatocardinogenic procedure induced by modified Ito model, which consists of 200mg/kg body weight diethylinitrosamine (DEN) injection, 0.01% 2-acethlaminoflurene(2-AAF) feeding for 6 weeks, and partial hepatectomy on week 3. Weanling Sprague-Dawley male rats were fed pulverized Purina rat chow with 15, 000IU/kg diet vitamin E from initiation or promotion stages. We found that vitamin E supplement decreased the area of GST-P positive foci. Catalase, glutathione peroxidase, glutathione reductase. GST activities, and TBARS contents were decreased. On the other hand G6Pase activities were increased by vitamin E supplement. It seemed that vitamin E supplements helped endogenous defense systems against carcinogenesis by decreasing TBARS contents, $H_2O$$_2$ and organic peroxides. So, vitamin E seemed to protect cell from free radical damage in carcinogenesis. Anticarcinogenic effects of vitamin E were more effective at intiation that at promotion stage. These results suggest that vitamin E has suppressive effects on hepatocellular chemical carcinogenesis, probably through antioxidant effects against TBARS contents $H_2O$$_2$ and orgainc peroxides.

  • PDF

Study on the immobilization of plant glutathione S-transferase for development of herbicide detection kit (제초제 검출 키트 개발을 위한 식물 해독효소 고정화 연구)

  • Cho, Hyun-Young;Lee, Jin-Joo;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • Glutathione S-transferase is known to play a crucial role in detoxification in many cases. To develop a herbicide detection biosensor, we in this study attempted to immobilize glutathione S-transferase enzyme on solid supports, polystyrene and agarose, and Na-alginate. These matrixes were attractive materials for the construction of biosensors and might also have utility for the production of immobilized enzyme bioreactors. We also compared the activities of glutathione-S-transferase immobilized OsGSTF3 and free OsGSTF3. The specific activity of the free enzyme in solution was 3.3 higher than the immobilized enzyme. These results suggest that 50% of the enzyme was bound with the catalytic site in polystyrene-alkylamine bead and immobilized enzymes showed 80% remaining activity until 3 times reuse.

The GSTP1 Ile105Val Polymorphism is not Associated with Susceptibility to Colorectal Cancer

  • Khabaz, Mohamad Nidal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2949-2953
    • /
    • 2012
  • The glutathione S transferase (GST) family is a major part of cellular defense mechanisms against endogenous and exogenous substances, many of which have carcinogenic potential. Alteration in the expression level or structure of the glutathione-S-transferase (GST) enzymes may lead to inadequate detoxification of potential carcinogens and consequently contribute to cancer development. A member of the glutathione-S-transferase (GST) family, GSTP1, is an attractive candidate for involvement in susceptibility to carcinogen-associated colorectal cancer. An $Ag{\rightarrow}G$ transition in exon 5 resulting in an Ile105Val amino acid substitution has been identified which alters catalytic efficiency. The present study investigated the possible impact of Ile105Val GSTP1 polymorphism on susceptibility to colorectal cancer. in Jordan We examined 90 tissue samples previously diagnosed with colorectal carcinoma, and 56 non-cancerous colon tissues. DNA was extracted from paraffin embedded tissues and the status of the GSTP1 polymorphism was determined using a polymerase chain reaction restriction fragment length polymorphism (RFLP) method. No statistically significant differences were found between colorectal cancer cases and controls for the GSTP1 Ile/Ile, Ile/Val and Val/Val genotypes. The glutathione S-transferase polymorphism was not associated with risk in colorectal cancer cases in Jordan stratified by age, sex, site, grade or tumor stage. In conclusion, the GSTP1 Ile105Val polymorphism is unlikely to affect the risk of colorectal cancer.

A Study of Glutathione S-transferase Inhibitors obtained from Allium cepa var. cepa Extract (양파 추출물에서의 글루타티온 전달효소 활성 저해제에 관한 연구)

  • Lee, Kwang-Soo;Park, Kyung-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.725-730
    • /
    • 2013
  • In this study, an ethanol extract being obtained from Allium cepa var. cepa examins the inhibitory effects on the glutathione S-transferase and the separation had been done by silica-gel column chromatography using various eluents, such as ethyl acetate, methanol, and 50% methanol. A volume of column fraction was 50ml and evaporation has been performde by the rotary evaporator under reduced pressure. Each fraction is being examined by thin layer chromatography and the UV spectrum at 365 nm was used to investigate separation patterns of spots on thin layer chromatography. When the eluent was changed, the spot patterns showed another different pattern on thin layer chromatography, so on. Fractions showing similar pattern are combined and eventually, three fractions are obtained. Each fraction is testified to examine the inhibition effects on glutathione S-transferase. All of these showed inhibition effects on glutathione S-transferase. The GC-MS shows that each fraction contains more than 2 compounds.

Chlorothalonil- Biotransformation by Glutathione S- Transferase of Escherichia coli

  • Kim, Young-Mog;Park, Kunbawui;Jung, Soon-Hyun;Park, Jun-Ho;Kim, Won-Chan;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • It has recently been reported that one of the most important factors of yeast resistance to the fungicide chlorothalonil is the glutathione contents and the catalytic efficiency of glutathione S-transferase (GST) (Shin et al., 2003). GST is known to catalyze the conjugation of glutathione to a wide variety of xenobiotics, resulting in detoxification. In an attempt to elucidate the relation between chlorothalonil-detoxification and GST, the GST of Escherichia coli was expressed and purified. The drug-hypersensitive E. coli KAM3 cells harboring a plasmid for the overexpression of the GST gene can grow in the presence of chlorothalonil. The purified GST showed chlorothalonil-biotransformation activity in the presence of glutathione. Thus, chlorothalonil is detoxified by the mechanism of glutathione conjugation catalyzed by GST.

Effect of Ethanol Extract from Thesium chinense Tunczaninov on Chemopreventive Enzymes of Breast Cancer (하고초 에탄올추출물이 유방암 예방효소계에 미치는 영향)

  • Nam, Kyung-Soo;Kim, Han-Gyu;Shon, Yun-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.2
    • /
    • pp.161-165
    • /
    • 2003
  • Ethanol extract from Thesium chinense Tunczaninov (TCTE) was tested for breast cancer chemopreventive activity by measuring 7,12-dimethylbenz[a]anthracene (DMBA) - induced cytochrome P450 1A1 activity, induction of quinone reductase and glutathione S-transferase, and glutathione level. TCTE significantly inhibited cytochrome P45O 1A1 activity at the concentration of 90 and 150 mg/ml. TCTE induced quinone reductase activity in a dose-dependent manner in a concentration range of 3-150 mg/ml. In addition glutathione S-transferase activity and glutathione level were increased with TCTE in cultured murine hepatoma Hepa1c1c7 cells. These results suggest that TCTE has breast cancer chemopreventive potential by inhibiting cytochrome P45O 1A1 activity, inducing quinone reductase and glutathione S-transferase activities, and increasing GSH level.

Ultrastructural localization of 28 kDa glutathione S-transferase in adult Clonorchis sinensis

  • Hong, Sung-Jong;Yu, Jae-Ran;Kang, Shin-Yong
    • The Korean Journal of Parasitology
    • /
    • v.40 no.4
    • /
    • pp.173-176
    • /
    • 2002
  • Glutathione S-transferase (28GST) with molecular mass of 28 kDa is an anti-oxidant enzyme abundant in Clonorchis sinensis. In adult C. sinensis, 28GST was localized in tegumental syncytium, cytons, parenchyma, and sperm tails examined by immunoelectron microscopy. C. sinensis 28GST was earlier found to neutralize bio-reactive compounds and to be rich in eggs. Accordingly. it is suggested that 28GST plays important roles in phase II defense system and physiological roles in worm fecundity of C. sinensis.