In this paper we study the closure property and probability tail asymptotics for randomly weighted sums $S^{\Theta}_n={\Theta}_1X_1+{\cdots}+{\Theta}_nX_n$ for long-tailed random variables $X_1,{\ldots},X_n$ and positive bounded random weights ${\Theta}_1,{\ldots},{\Theta}_n$ under similar dependence structure as in [26]. In particular, we study the case where the distribution of random vector ($X_1,{\ldots},X_n$) is generated by an absolutely continuous copula.