• Title, Summary, Keyword: horizontal subspace

Search Result 3, Processing Time 0.031 seconds

HORIZONTAL SUBSPACES IN THE BUNDLE OF LINEAR FRAMES

  • Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.513-517
    • /
    • 2012
  • Let L(M) be the bundle of all linear frames over a smooth manifold M, $u$ an arbitrarily given point of L(M), and ${\nabla}:\mathfrak{X}(M){\times}\mathfrak{X}(M){\rightarrow}\mathfrak{X}(M)$ a linear connection on M. Then the following result is well known: the horizontal subspace at the point $u$ may be written in terms of local coordinates of $u{\in}L(M)$ and Christoel's symbols defined by ${\nabla}$. This result is very fundamental on the study of the theory of connections. In this paper we show that the local expression of the horizontal subspace at the point u does not depend on the choice of a local coordinate system around the point $u{\in}L(M)$, which is rarely seen.

Singular Value Decomposition Approach to Observability Analysis of GPS/INS

  • Hong, Sin-Pyo;Chun, Ho-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.133-138
    • /
    • 2006
  • Singular value decomposition (SDV) approach is applied to the observability analysis of GPS/INS in this paper. A measure of observability for a subspace is introduced. It indicates the minimum size of perturbation in the information matrix that makes the subspace unobservable. It is shown that the measure has direct connections with observability of systems, error covariance, and singular structure of the information matrix. The observability measure given in this paper is applicable to the multi-input/multi-output time-varying systems. An example on the observability analysis of GPS/INS is given. The measure of observability is confirmed to be less sensitive to system model perturbation. It is also shown that the estimation error for the vertical component of gyro bias can be considered unobservable for small initial error covariance for a constant velocity horizontal motion.

  • PDF

RIGIDITY OF PROPER HOLOMORPHIC MAPS FROM Bn+1 TO B3n-1

  • Wang, Sung-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.895-905
    • /
    • 2009
  • Let $B^{n+1}$ be the unit ball in the complex vector space $\mathbb{C}^{n+1}$ with the standard Hermitian metric. Let ${\Sigma}^n={\partial}B^{n+1}=S^{2n+1}$ be the boundary sphere with the induced CR structure. Let f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$ be a local CR immersion. If N < 3n - 1, the asymptotic vectors of the CR second fundamental form of f at each point form a subspace of the CR(horizontal) tangent space of ${\Sigma}^n$ of codimension at most 1. We study the higher order derivatives of this relation, and we show that a linearly full local CR immersion f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$, N $\leq$ 3n-2, can only occur when N = n, 2n, or 2n + 1. As a consequence, it gives an extension of the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{2n+2}$ by Hamada to the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{3n+1}$.