• Title, Summary, Keyword: humidity control

Search Result 1,005, Processing Time 0.042 seconds

Development of Fuzzy Controller for Air Conditioning of Grain Bin (곡물빈용 공기조화장치의 퍼지제어기 개발)

  • 최영수;문대식;정종훈
    • Korean Journal of Food Preservation
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.

A Comparison Evaluation on the Indoor Temperature and Humidity Control Effect of Hwang-To Brick and Traditional Window as Exterior envelops in Mock-up Room (Mock-up 실험을 통한 황토벽과 전통창호의 실내 온습도 조절효과에 대한 비교평가)

  • Song, Min-Jeong;Shin, Hoon
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.131-137
    • /
    • 2010
  • This study aims to know temperature and humidity handling ability of Hwang-To brick and traditional paper window's in mock-up room test. To achieve these goals, mock-up room test was carried out. The results are as follows. 1) There are no significant differences among specimen in temperature handling capacity. 2) Traditional paper windows are very sensitive when compared with glass window in humidity control. 3) Traditional paper windows have a big handling capacity in humidity control when vapors letting out in mock-up room. 4) Hwang-To brick case is more stable than other cases in relative humidity variances because it has more potential to contain humidity.

Problem Solving about Practical Engineering Education based on Relationship of Temperature and Humidity in Vehicle (차량 내 온, 습도 관계에 의한 실천공학교육적 문제해결)

  • Kim, Jin-woo;Joo, Kangwo
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Inside the vehicle, temperature and humidity are suddenly changed. Accordingly, HVAC System's temperature control is very complicated. But, clarifying the relationship between temperature and humidity can reduce the control parameters. Therefore, this paper describes the relationship between temperature and humidity in the vehicle and presents a problem solving method in terms of control technologyThe vehicle sensor monitors the factors required for vehicle control and plays a role in enabling optimal control from the obtained information. Of these sensors, the driving environment of the driver is determined by the temperature and humidity inside the vehicle, and the characteristics of the vehicle suddenly change rapidly. Accordingly, HVAC System's temperature control is very complicated. But, clarifying the relationship between temperature and humidity can reduce the control parameters. Therefore, this paper describes the relationship between the temperature and humidity in the vehicle, and presents a method for controlling the temperature and humidity in the vehicle as an example.

Actuator multiple control method for greenhouse environment control system (온실 환경 제어시스템을 위한 액추에이터 복합 제어 방법)

  • Son, Kyo-Hoon;Park, Dae-Heon;Kim, Se-Han;Kim, Jae-Hyung;Jeung, Eun-Tae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.39-45
    • /
    • 2012
  • In recent years the USN(Ubiquitous Sensor Networks) technology has been applied in the greenhouse in order to control temperature and humidity automatically. In this paper, we proposed a control algorithm using feedback linearization techniques based on a mathematical model for temperature and humidity environment. Especially, Control algorithm is presented to the operation of the ventilator affecting on the temperature and humidity system at the same time. The System has been designed taking into account the disturbance(External temperature, soil temperature, external humidity, solar radiation and wind). In conclusion, I will present a way to control multiple actuator through simulations. The proposed control algorithm is validated using the Matlab/Simulink tools.

  • PDF

A study on humidity control characteristics of inorganic paint (무기질 도료의 조습성능에 관한 연구)

  • Heo, Jung-Yong;Choi, Chang-ho;Lee, Yun-Gyu
    • Proceedings of the SAREK Conference
    • /
    • /
    • pp.1225-1230
    • /
    • 2008
  • Recently the building material have been developed with the concept of controlling the indoor environment as well as the concept of emitting contaminants less. So, a lot of products with humidity control characteristics put it on the market. However, objective evaluation to these products doesn't work out. Thus consumers cannot obtain accurate information to these products. Therefore, we selected inorganic paint in the functionality materials and evaluated its humidity control characteristic in this research. We divided by four stages and evaluated this inorganic paint. The 1st and 2nd third experiments were executed on a natural condition and the fourth experiment was executed with humidity had been raised by using the humidifier.

  • PDF

Performance Evaluation of Water Vapour Adsorption & Desorption Properties of Ceramic Panel and Painting Materials for Humidity Control (습도조절용 세라믹패널 및 도료의 흡·방습성능 평가)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.43-52
    • /
    • 2018
  • This study is conducted to evaluate the performance of ceramic panels and painting materials for humidity control which are developed in non-plastic room temperature hardening structure as part of a project to improve a residential environment for the low-income class, rather than the performance of high-priced humidity control materials that are produced with the existing plasticity processing. The testing methods included the measurements of absorption & desoprtion of humidity per material; Mock-up Testing; an evaluation method of comparing the absorption & desoprtion performances of Ecocarat, ceramic panels and painting materials through Living Lab. According to the measurements of absorption & desoprtion per material, ceramic panels, E panel, and ceramic painting material showed 73.3g/m2, 96.6g/m2, and 111.1g/m2, respectively. That is, the performance of humidity control of each material was found to be good in the order of: Ceramic Paint > E panel > Ceramic Panel. According to performance evaluation testing with Mock-up test and Living Lab, Ceramic Paint, Ecocarat, and Ceramic Panels showed better absorption & desoprtion performances in the order.

The Experimental Study on a Effect of Korean Paper (Hanji) on Indoor Humidity Control (한지(韓紙)가 실내습도조절에 미치는 영향에 관한 실험적 연구)

  • 이종원;임정명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-607
    • /
    • 2004
  • The purpose of this study is to reevaluate the performance of Hanji as an architectural material. Hanji has good things in controlling indoor space comfortably. Particularly, ability of controlling humidity of Hanji affects indoor space comfort and human health. The major focuses of this experimental research are (1) how much of water vapor passes through Hanji, (2) how much of water vapor is absorbed into Hanji. In the first case, indoor humidity is higher than outdoor humidity. In this case, approximately 38 g of water vapor passes through Hanji 1, genarally utilized in window paper (Changhoji), per square meter in one hour. And approximately 4 g of water vapor is absorbed into Hanji 2, genarally utilized in wallpaper, per square meter. In the second case, outdoor humidity is higher than indoor humidity. In this case, Hanji passes water vapor to inner space at first, but when indoor relative humidity reach approximately 66%, although outdoor humidity is higher than indoor humidity, water vapor doesn't pass through Hanji. If Hanji is utilized in window material and wallpaper, indoor space is maintained comfortably without mechanical devices in humidity control.

Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells (고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발)

  • Han, In Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Fuzzy-based Fan Control using Arduino's Temperature and Humidity for Comfortable Indoor Environment (쾌적한 실내 환경을 조성하기 위한 아두이노의 온도와 습도를 이용한 퍼지 기반의 팬 제어 연구)

  • Kim, Jaeheoung;Kim, Jaewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.389-392
    • /
    • 2018
  • In this paper, we try to make a pleasant environment by adjusting the fan moving by temperature and humidity in hot and humid room. To do this, we propose a fuzzy-based fan control using room temperature and humidity, collect environment data such as indoor temperature and humidity using Arduino, transmit it to Bluetooth communication, and adjust the operation time of fan according to fuzzy logic. To do this, connect a temperature and humidity sensor to the Arduino hardware, write the source code using the Arduino program on your computer, and code it in Arduino. Then, the environmental data obtained after collecting environmental data such as humidity from Arduino is transferred to the Arduino Control Module through Bluetooth communication. We use the fuzzy logic to control the time of fan operation according to environmental data such as temperature and humidity. At the end of this process, the fan will operate according to temperature and humidity to create a pleasant environment. Through this study, Arduino was simpler and easier to use than I thought, and I think it's easy to use and can be used in real life by using Arduino hardware, data acquisition, fuzzy logic, and control.

  • PDF

Development of a Fully-Controlled Phytotrons -Temperature and Humidity Control System- (완전제어형(完全制御型) 실험용(實驗用) 작물생육장치(作物生育裝置)의 개발(開發)(I) -온(溫)·습도(濕度) 제어(制御) 시스템-)

  • Lee, K.C.;Ryu, K.H.;Noh, S.H.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 1992
  • The aim of this study was to develop a phytotron for studying the effects of environmental factors such as temperature and humidity on plant growth. This equipment consists of the growth chamber, and the measurement and control system including control algorithms required for optimum operation. As the first step of the study, a temperature and humidity control system was developed. The results of this study are summarized as follows ; 1. Pt-100 was selected to measure temperature and a linearized op-amp circuit was developed for signal conditioning. 2. Pt-100 wet bulb thermometer based on Asmann's principle was developed to measure relative humidity. 3. Temperature and relative humidity conditions were controlled by ON-OFF and PWM operation using a PID controller. And an autotuning algorithm using the characteristics of step response was developed to determine optimal PID constants which were independent of the size of apparatus and environmental factors. 4. Under the ambient temperature of $20^{\circ}C{\sim}25^{\circ}C$, the temperature was kept within the error of ${\pm}0.3^{\circ}C$ in the range of $10^{\circ}C{\sim}40^{\circ}C$, and the relative humidity was kept within the error of ${\pm}5%$ in the range of ${\pm}50%{\sim}90%$.

  • PDF