• Title, Summary, Keyword: hydrogen peroxide

Search Result 2,013, Processing Time 0.092 seconds

Effect of Sacchromyces cerevisiae-Fermented Artemisiae Argi Folium on Hydrogen Peroxide Production of Macrophage Treated with Toxicants (EtOH 등으로 유발된 대식세포 내 hydrogen peroxide 생성억제에 대한 효모균발효애엽 추출물의 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.608-612
    • /
    • 2009
  • The effect of Sacchromyces cerevisiae-Fermented Artemisiae Argi Folium Water extract (AFS) on hydrogen peroxide production within mouse macrophage Raw 264.7 Cells treated with EtOH, gallic acid, Nicotine, Acetaminophen, and Acetaldehyde was investigated through this study. AFS (0-400 ug/mL) was simultaneously treated with EtOH, gallic acid, Nicotine, Acetaminophen, and Acetaldehyde. And the intracellular productions of hydrogen peroxide were measured by dihydrorhodamine 123 (DHR) assay. AFS restorated the intracellular productions of hydrogen peroxide reduced by EtOH, gallic acid, Nicotine, Acetaminophen within Raw 264.7 Cells. AFS could be supposed to have the immunological activity concerned with macrophage's oxidative burst.

Effect of Artemisiae Argi Folium Fermented with Lactobacillus Pentosus on Hydrogen Peroxide Production of Macrophage Treated with Toxicants (Gallic acid 등으로 유발된 대식세포 내 hydrogen peroxide 생성억제에 대한 유산균발효애엽 추출물의 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.438-442
    • /
    • 2009
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium Fermented with Lactobacillus pentosus (AFL) on hydrogen peroxide production within mouse macrophage Raw 264.7 Cells treated with gallic acid, EtOH, Nicotine, Acetaminophen, and Acetaldehyde. AFL (0${\sim}$400 ug/mL) was treated with gallic acid, EtOH, Nicotine, Acetaminophen, and Acetaldehyde. And the intracellular productions of hydrogen peroxide were measured by dihydrorhodamine 123 (DHR) assay. AFL showed the restoration of the intracellular productions of hydrogen peroxide which were reduced by gallic acid, EtOH, Nicotine, Acetaminophen in Raw 264.7 Cells. AFL could be supposed to have the immunological activity related with macrophage's oxidative burst.

Effect of Water Extract from Artemisiae Argi Folium on Hydrogen Peroxide Production within Mouse Macrophage Raw 264.7 Cells Treated with Gallic acid, EtOH, LPS, and Acetaminophen (Gallic acid, EtOH, LPS, Acetaminophen으로 유발된 마우스 대식세포 내 hydrogen peroxide 생성억제에 대한 애엽 물추출물의 영향 연구)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1495-1499
    • /
    • 2008
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium (WAAF) on hydrogen peroxide production within mouse macrophage Raw 264.7 Cells treated with gallic acid, EtOH, LPS, and acetaminophen. WAAF (0${\sim}$400 ug/mL) was treated with gallic acid, EtOH, LPS, acetaminophen. And the intracellular productions of hydrogen peroxide were measured by dihydrorhodamine 123 (DHR) assay. WAAF showed the restoration of the intracellular productions of hydrogen peroxide which were reduced by gallic acid, EtOH, LPS, and acetaminophen in Raw 264.7 Cells. WAAF could be supposed to have the immunological activity related with macrophage's oxidative burst.

Decolorization of Melanin by Lignin Peroxidase from Phanerochaete chrysosporium

  • Woo, Sung-Hwan;Cho, Jeung-Suk;Lee, Baek-Seok;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.256-260
    • /
    • 2004
  • Melanin was decolorized by lignin peroxidase from Phanerochaete chrysosporium. This decolorization reaction showed a Michaelis-Mentens type relationship between the decolorization rate and concentration of two substrates: melanin and hydrogen peroxide. Kinetic constants of the decolorization reaction were 0.1 OD$\sub$475//min ($V_{max}$) and 99.7 mg/L ($K_{m}$) for melanin and 0.08 OD$\sub$475//min ($V_{max}$) and 504.9 ${\mu}$M ($K_{m}$) for hydrogen peroxide, respectively. Depletion of hydrogen peroxide interrupted the decolorization reaction, indicating the essential requirement of hydrogen peroxide. Pulsewise feeding of hydrogen peroxide continued the decolorizing reaction catalyzed by lignin peroxidase. These results indicate that enzymatic decolorization of melanin has applications in the development of new cosmetic whitening agents.

Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments (산소희박환경에서 과산화수소를 이용한 디젤개질 가능성 탐구)

  • Han, Gwangwoo;Bae, Minseok;Bae, Joongmyeon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.584-589
    • /
    • 2015
  • For effective power generation with fuel cells in low-oxygen environments such as submarines and unmanned underwater vehicles, a hydrogen source which has a high hydrogen storage density is required. Diesel fuel is easy to storage and supply due to its liquid phase and it has a high density per unit volume and unit mass of hydrogen that required for driving the fuel cells. In this paper, diesel fuel was selected as a hydrogen source for driving the fuel cell in oxygen lean environments. In addition, the aqueous hydrogen peroxide solution was suggested as an alternative oxidant for hydrogen production through the diesel reforming reaction because of its high oxygen density and liquid phase which makes it easy to storage. In order to determine the characteristics of hydrogen peroxide as an oxidant of diesel reforming, comparative experiments were conducted and it was found that hydrogen peroxide solution has the same characteristics when reformed with oxidants of both steam and oxygen. Moreover, the commercial diesel reforming performances were analyzed according to the reaction temperature and concentration of aqueous hydrogen peroxide solution. Then, through the 49 hours accelerated degradation tests, the possibility of hydrogen production via diesel and aqueous hydrogen peroxide solution was confirmed.

Antimicrobial Effect of Lactic acid and Hydrogen Peroxide and Distribution of Vibrio parahaemolyticus from the Incheon Adjacent Sea (인천연안 Vibrio parahaemolyticus의 분포 및 유산과 과산화수소 처리에 의한 항균효과)

  • Jang, Jae-Seon;Cho, Woo-Kyoun;Lee, Hye-Jeong;Lee, Jea-Mann;Kim, Hye-Young;Kim, Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to investigate the distribution of Vibrio parahaemolyticus in the Incheon adjacent sea, and antimicrobial effect on growth of Vibrio parahaemolyticus in lactic acid and hydrogen peroxide and combination of lactic acid and hydrogen peroxide. The detected strains were compared geographical, months and sample types. The distribution of Vibrio parahaemolyticus was high at Ganghwa county with 66.1%(336 samples), on 7-9 months with 72.4%(386 samples) and from tireland with 75.0%(90 samples), respectively. The minimun inhibitory concentration (MIC) of lactic acid in Vibrio parahaemolyticus were 1250 ppm at pH 6.5 and 7.0, 625 ppm at pH 6.0. respectively. The minimun inhibitory concentration (MIC) of hydrogen peroxide in Vibrio parahaemolyticus were 25 ppm at pH 6.5 and 7.0, 12.5 ppm at pH 6.0, respectively. MICs of combined treatment of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus were 625 ppm of lactic acid with 12.5 ppm of hydrogen peroxide. The correlations between MICs of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus were obtained through the coefficient of determination($R^2$). $R^2$ value were 1.0000. The antimicrobial effect of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus could be confirmed from the result of this experiment.

Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes by Hydrogen Peroxide and Lactic acid (과산화수소와 유산ol Escherichia coli O157:H7, Salmonella Enteritidis 및 Listeria monocytogenes의 증식 억제에 미치는 영향)

  • Jang Jae-Seon;Lee Mi-Yeon;Lee Jea-Mann;Kim Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4
    • /
    • pp.69-75
    • /
    • 2004
  • The inhibitory effect of the food processing agent on growth of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes was performed with hydrogen peroxide and lactic acid, and combination of hydrogen peroxide and lactic acid. The minimun inhibitory concentration (MIC) of hydrogen peroxide in E coli O157:H7 was 100 ppm at pH 5.0, 6.0, 6.5 and 7.0, while in Listeria monocytogenes 25 ppm at PH 5.5, 6.0 and 50 ppm at PH 6.5, 75ppm at pH 7.0. MIC of lactic acid in E coli O157:H7 was 2500 ppm at pH 5.0, 6.0, 6.5 and 7.0. MIC of lactic acid in S. Enteritidis was 1250 ppm at pH 5.0, 2500 ppm at pH 5.5, 6.0, 5.5 and 7.0, while in L monocytogenes 625 ppm at pH 5.5 and 125 ppm at pH 6.0, 6.5 and 7.0. MIC of combined hydrogen Peroxide and lactic acid in E. coli O157:H7, S. Enteritidis, and L. monocytogenes was 75 ppm of hydrogen peroxide with 2500 ppm of lactic acid at pH 6.5. The correlations between MICs of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogene were obtained through the coefficient of $determination(R^2)$. $R^2$ value were 0.9994, 0.9935 and 0.9283, respectively. The inhibitory effect of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes could be confirmed from the result of this experiment. Therefore, it was expected that the food process would increase or maintain by using lactic acid together with hydrogen peroxide.

Storage Stability of the Commercial Hydrogen Peroxide, Sodium Hypochlorite, Glutaraldehyde and Didecyl Dimethyl Ammonium Chloride (DDAC) (시판 Hydrogen Peroxide, Sodium Hypochlorite, Glutaraldehyde 및 Didecyl Dimethyl Ammonium Chloride (DDAC)의 보존 안전성)

  • Park, Kyung-Hee;Kim, Seok-Ryel;Kang, So-Young;Jung, Sung-Ju;Kim, Heung-Yun;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.172-175
    • /
    • 2008
  • We evaluated storage stability of hydrogen peroxide, sodium hypochlorite, glutaraldehyde and didecyl dimethyl ammonium chloride (DDAC). Hydrogen peroxide and DDAC have been stabilized for 6-month storage at room temperature and $4^{\circ}C$ after opening. However sodium hypochlorite and glutaraldehyde were degraded to 15% and 39% for 6 month storage at $4^{\circ}C$ after opening, respectively. Therefore we have to take special attention wherever long term storing hydrogen peroxide and DDAC, also organic contents and pH in water should be considered for effective application in fish farms.

Elctrokinetic-Fenton 기법 적용시 토질조건과 오염원의 종류에 따른 과산화수소의 주입특성

  • 김정환;김병일;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • /
    • pp.30-33
    • /
    • 2002
  • In this study, feasibility of using hydrogen peroxide as a chemical oxidant for in-situ treatment by EK-Fenton technology were investigated. Kaolinite, kaolinite/sand mixture and illitic soil spiked by phenol and phenanathrene were used and variation of electrochemical characteristics were examined by EK-Fenton test. For kaolinite that having low buffer capacity, hydrogen peroxide was injected effectively from anode reservoir. However illitic soil that having relatively higher buffer capacity had low hydrogen peroxide introducing efficiency. The test results showed that Hydrogen ions generated by current increased during the treatment decreased under pH 3 in the most of kaolinite specimen. Therefore, stabilized hydrogen oxide was injected more effectively in the kaolinite specimen. This study suggests that efficiency of hydrogen peroxide injection by EK-Fenton thechnoloty is dependent of variation of pH in the soil

  • PDF

Evaluation of Advanced Oxidation Process(AOP) as a Pretreatment Process of Biological Activated Carbon in Drinking Water Treatment (정수처리에서 생물활성탄의 전처리로서 고급산화처리법의 평가)

  • Kim Woo-Hang
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.725-730
    • /
    • 1999
  • The advanced oxidation process (AOP) using ozone combined with hydrogen peroxide and ultraviolet treatment were evaluated for biodegradable dissolved organic carbon (EDOC) formation and dissolved organic carbon (DOC) removal. Oxidation treatment were conducted alone or combination with ozone, hydrogen peroxide and ultraviolet processes. Ozone dosage of ozone process was varied from $0.5mg/l{\ell}\cdot}min$ to $5mg/{\ell}{\cdot}min$. Ozone/hydrogen peroxide process was done using $20mg/{\ell}{\cdot}min$ of hydrogen peroxide concentration. Ozone/ultraviolet process was irradiated with $12mW/cm^2$ of density and 254nm. Ozone dosage was varied from $0.5mg/{\ell}{\cdot}min$ to $5mg/{\ell}{\cdot}min$ at the ozone/hydrogen peroxide and ozone/ultraviolet processes too. Contact time of all the process was 20 minutes. Oxidation treatment were performed on microfiltration effluent samples. BDOC formation was reached to an optimum at ozone dosage of $1.5mg/{\ell}{\cdot}min$ in the ozone/hydrogen peroxide process and $1mg/{\ell}{\cdot}min$ in ozone/ultraviolet process, after which BDOC formation was decreased at higher ozone dosages. But BDOC formation was increased with ozone dosages increasing in ozone process. The efficiency of DOC removal was higher AOPs than ozone process. Ozone/ultraviolet proces was the highest for DOC removal efficiency in each process. THMFP. removal efficiency by ozone/ultraviolet process was higher than that by each of ozone process and ozone/hydrogen peroxide process.

  • PDF