• Title, Summary, Keyword: iNOS

Search Result 1,525, Processing Time 0.052 seconds

Antioxidant and anti-inflammatory effects of red garlic compositions (홍마늘 조성물의 항산화 및 항염증 효과)

  • Kang, Min Jung;Kim, Dong-Gyu;Shin, Jung Hye
    • Korean Journal of Food Preservation
    • /
    • v.24 no.3
    • /
    • pp.446-454
    • /
    • 2017
  • Garlic (Allium sativum L.) and traditional herb has several functional properties and strong biological activities, making it useful as a functional food material. We investigated the antioxidant and anti-inflammatory activity of mixed compounds from red garlic and supplementary materials, including ginger (Zingiber officinale Roscoe), doraji (Platycodon grandiflorum), quince (Chaenomeles sinensis), citrus peel (Citri Pericarpium), and mint (Mentha arvensis). The extracts were prepared with water (W) and ethanol (E) at $70^{\circ}C$ (W-70, E-70) and $95^{\circ}C$ (W-95, E-95) for 3 h. The total content of phenolic compounds was the highest in E-70 (608.60 mg/100 g). Alliin, one of the active ingredients in red garlic, was contained at 1.18-1.29 mg/g and 0.81-0.85 mg/g in water and ethanol extract, respectively. Another active ingredient of red garlic, S-allyl-cysteine (SAC) had higher content in the water extract than in the ethanol extracts. DPPH radical scavenging activity was higher in E-70 (15.96-73.65%) at $313-5,000{\mu}g/mL$. ABTS radical scavenging activity was also higher in E-70 (5.71-77.19%) than in the others. The ROS production rate showed the same tendency as the NO production, with more efficacy in E-95. The expression level of iNOS and $IL-1{\beta}$ was decreased in the E-95 significantly at the concentration of $1,000{\mu}g/mL$ compared to the lipopolysaccharide (LPS) treated group. Based on the above results, the antioxidative and anti-inflammatory activities of the extracts of red garlic and supplementary materials were expressed by different useful substances. The contents of these useful substances were different according to the extraction solvent and temperature.

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw264.7 cell에서 Rhododendron mucronulatum Turcz. Flower으로부터 분리한 myricetin에 의한 염증 억제효과)

  • Choi, Moo-Young;Hong, Shin-Hyup;Cho, Jun-Hyo;Park, Hye-Jin;Jo, Jae-Bum;Lee, Jae-Eun;Kim, Dong-Hee;Kim, Byung-Oh;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1245-1252
    • /
    • 2016
  • As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.

Comparative Study of the Biological Activity Effects of Manjakani (Quercus infectoria Olivier) Extract using Water and 80% Ethanol (열수 및 80% 에탄올로 추출한 만자카니(Quercus infectoria Olivier)의 생리활성 비교연구)

  • Lee, Hea-Jin;Kim, Dong-Han;Lee, Eun-Jin;Lim, Mi-Hye
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.124-132
    • /
    • 2020
  • The purpose of this study was to investigate the biological activities such as cytotoxicity and anti-inflammation using Manjakani (Quercus infectoria Olivier) extract. Manjakani was extracted from hot DW and 80% ethanol. Cell viability was assessed using MTT assay on RAW 264.7 cells. Also, anti-inflammatory activities were measured through changes in the levels of nitric oxide (NO), prostaglandin E2 (PGE2), leukotrien B4 (LTB4), pro-inflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor (TNF)-α) and transcription factor on LPS-induced RAW264.7 cells. The results confirmed that significant cytotoxicity does not appear in the concentration range of 1, 5, and 10 ㎍/㎖ of both extracts of this study. The production of NO was slowed by approximately MDE 37.2% and MEE 43.7% at 10 ㎍/㎖ concentration. Also, level of PGE2 and LTB4 was decreased MDE 30.9%/MEE 43.7% and MDE 37.1%/MEE 43.7%. In the case of inflammatory cytokine was reduced to MDE 38.8%/MEE 50.8% for IL-1β, MDE 35.0%/MEE 44.2% for IL-6 and MDE 31.9%/MEE 36.6% for TNF-α at 10 ㎍/㎖ concentration. The mRNA expression of NF-κB, iNOS and COX-2 significantly decreased by MDE 44.0%/MEE 16.0%, MDE 44.0%/MEE 55.0% and MDE 45.0%/MEE 40.0%, respectively, following the 10 ㎍/mL sample treatment when compared to the control. Both extracts were effective in anti-inflammatory activity. In addition, both extracts showed efficient changes of production of NO, PGE2, LTB4, pro-inflammatory cytokines and transcription factor. But MEE was found to have a higher inhibitory effect than MDE. In other words, Manjakani was showed significant biological activities showing anti-inflammation without cytotoxicity. These results will be provided as fundamental data for further development of the new health food and therapeutics related to the results above.

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis (흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성)

  • Lee, Joon Ha;Baek, Minhee;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Seo, Minchul;Kim, Mi-Ae;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1218-1226
    • /
    • 2019
  • The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.

Antioxidant, antibacterial, antifungal, and anti-inflammatory effects of 15 tree essential oils (수목 방향유 15종의 산화방지, 항세균, 항진균 및 항염증 효과)

  • Jo, Se Jin;Park, Mi-Jin;Guo, Rui Hong;Park, Jung Up;Yang, Ji Yoon;Kim, Jae-Woo;Lee, Sung-Suk;Kim, Young Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.535-542
    • /
    • 2018
  • The current study investigated the beneficial effects of 15 essential oils isolated from tree branches, leaves, and flowers. Among these oils, clove bud and Illicium anisatum oils showed the most potent anti-oxidant effects on 1,1-diphenyl-2-picrylhydrazyl and 2,2'azinbis-(3-ethyl-benzothiazoline-6-sulfonic acid) radical scavenging activities. Next, we evaluated the antibacterial effects of 15 essential oils on Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, Salmonella typhimurium, and Streptococcus mutans. Clove bud significantly decreased growth of 5 bacterial strains. In addition, clove bud, Magnolia kobus, Picea abies and Chamaecyparis obtuse significantly reduced growth of the fungi, Aspergillus fumigatus, Aspergillus ochraceus, Candida albicans and Trichophyton rubrum. Additionally, clove bud also remarkably reduced the expression of cyclooxygenase-2 and inducible NO synthase in lipopolysaccharide-activated RAW264.7 cells. These results indicate that essential oils isolated from trees, which exhibit antioxidant, antibacterial, antifungal and anti-inflammatory properties, may be potentially useful in the development of cosmetic ingredients.

Antioxidant and Anti-Inflammatory Activities of Crude Extract and Solvent Fractions of Allium hookeri (삼채의 조추출물과 유기용매 분획물에 대한 항산화 및 항염증 효과)

  • Lee, Yong-Bum;Ham, Young-Min;Yoon, Seon-A;Oh, Dae-Ju;Song, Sang-Mok;Hong, In-Choel;Lee, Si Taek;Hyun, Ho Bong;Kim, Chang-Suk;Yoon, Weon-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study describes the preliminary evaluation of antioxidant and anti-inflammatory activities of Allium hookeri. A. hookeri was extracted using crude extract and then fractionated sequentially with n-hexane, $CH_2Cl_2$, EtOAc, and n-BuOH. To screen for antioxidant and anti-inflammatory agents effectively, we first examined the inhibitory effect of A. hookeri extracts on production of oxidant stresses (2,2-diphenyl-1-picrylhydrazyl, xanthine oxidase, and superoxide). In addition, we examined the inhibitory effects of A. hookeri on production of pro-inflammatory factors (nitric oxide, prostaglandin $E_2$, inducible nitric oxide synthase, and cyclooxygenase-2) in murine macrophage RAW 264.7 cells stimulated with lipopolysaccharide. Of the sequential solvent fractions of A. hookeri, EtOAc fractions showed decreased production of oxidant stresses, and $CH_2Cl_2$ and EtOAc fractions of A. hookeri inhibited production of pro-inflammatory factors. EtOAc fraction inhibited production of pro-inflammatory cytokines (interleukin-6 and -$1{\beta}$). These results suggest that A. hookeri has significant effects on oxidant stresses and pro-inflammatory factors and is a possible antioxidant and anti-inflammatory therapeutic and preventive material.

Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema (Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Choi, Hyeun-Deok;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Nam, Hee-Sup;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.101-109
    • /
    • 2017
  • This study investigated the effect of the dichloromethane fraction form Katsuwonus pelamis heart on anti-inflammatory responses in lipopolysaccharide-stimulated RAW 264.7 cells and mouse models. Ethanol extract was partitioned with dichloromethane, ethyl acetate, butanol, and water. Among the fractions, the dichloromethane fraction showed a significant decrease in nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$] production compared to ethanol extract. The dichloromethane fraction attenuated the expression of inducible nitric oxide synthase and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65 proteins in a dose-dependent manner. In addition, the expression of phosphorylation of mitogen-activated protein kinases (MAPKs) was also inhibited by the dichloromethane fraction. Moreover, the administration of 10, 50, and 250 mg/kg body weight-dose dependently inhibited the formation of edema by croton-oil and the application of dichloromethane (2 mg/ear) significantly reduced epidermal and dermal thickness and the infiltrated mast cell numbers. Therefore, the dichloromethane fraction exhibited an anti-inflammation effect by inhibiting $NF-{\kappa}B$ and MAPK signaling activation in macrophages.

Anti-Inflammatory Effect of Sargassum patens C. Agardh Ethanol Extract in LPS-induced RAW264.7 Cells and Mouse Ear Edema (LPS로 유도된 RAW 264.7 cell과 마우스 귀 부종 모델을 통한 쌍발이 모자반 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Kim, Min-Ju;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Choi, Hyeun-Deok;Park, So-Yeong;Kim, Ji-Hyun;Jang, Mi-Ran;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • The anti-inflammatory effect of Sargassum patens C. Agardh ethanol extract (SPEE) was examined based on the lipopolysaccharide (LPS)-induced inflammatory response in this study. SPEE treatment was not cytotoxic to macrophages compared to the control. The production of NO was suppressed by SPEE by approximately 28% at $100{\mu}g/ml$, and levels of interleukin-6, tumor necrosis $factor-{\alpha}$, and $interleukin-1{\beta}$ decreased in a dose-dependent manner. In addition, the expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ was suppressed by SPEE treatment. In vivo, croton oil-induced mouse ear edema was attenuated by SPEE and the infiltration of mast cells into the tissue decreased. Based on these results, SPEE inhibits the release of LPS-induced pro-inflammatory cytokines and mediators, suggesting that SPEE is a potential agent for anti-inflammatory therapies.

Anti-inflammation Activities of Cultured Products from Suspension Culture of Aloe vera Callus (Aloe vera Callus 현탁배양 생성물의 항염증 활성)

  • Kim, Myung Uk;Cho, Young Je;Lee, Shin Young
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.157-163
    • /
    • 2013
  • Cultured products (callus and exopolysaccharide) were obtained from suspension culture of Aloe vera callus, and the extracts of callus were further prepared with cold water or 60% ethanol solution. The ethanol extract of callus (AC) and exopolysaccharide (ACP) of 10 mg/mL exhibited the relatively higher suppression activity of 43.2-52.1% against hyaluronidase activity. Thus, their anti-inflammatory effects were further investigated using animal cell (Raw 264.7) in vitro. Though AC shows a slight suppression effect of cell survival rate (97%) using MTT assay in the presence of $400{\mu}g/mL$ AC- dimethyl sulfoxide (DMSO), cell growth promotion was observed in the other samples of lower levels. It indicates that the ethanol extract of Aloe callus rarely affect cell survival rate in the ranges ($200-400{\mu}g/mL$) used in the study. Using Griess reagent, the suppression of NO production by the aloe callus extract was analyzed by measuring the amount of the nitrite produced in Raw 264.7 culture activated by lipopolysaccharide (LPS). As a result, supplementation of AC-distilled water (DW) and AC-DMSO produced higher levels of NO than the positive control LPS. However, the NO suppression effect by ACP-DW was so intense that lower amount ($80-100{\mu}g/mL$) suppressed NO production to the level of the control. The effect was attributed to the expression of the iNOS. Then, Raw 264.7 cells were stimulated with the LPS and expression of COX-2 protein level was analyzed depending on the Aloe suspension culture product treatment. The results showed that the ACP-DW supplemented medium did not express COX-2 by itself, and LPS stimulated COX-2 expression was slightly decreased. On the other hand, realtime-PCR analysis of the expression of inflammatory cytokine showed that IL-$1{\beta}$ and TNF-${\alpha}$ expression was highly suppressed in the ACP- distilled water supplemented medium.