• Title, Summary, Keyword: in-vivo 영상

Search Result 203, Processing Time 0.038 seconds

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

Development of a High-Speed Endoscopic OCT System and Its Application to Three-Dimensional Intravascular Imaging in Vivo (고속 내시경적 OFDI 시스템 개발과 이를 이용한 3차원 생체 혈관 내부 이미징)

  • Cho, Han Saem;Jang, Sun-Joo;Oh, Wang-Yuhl
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • Intravascular optical coherence tomography (OCT) enables imaging of the three-dimensional (3D) microstructure of a blood vessel wall. While 3D vascular visualization provides detailed information of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the imaging resolution of the system has limited true high-resolution 3D imaging. In this paper we demonstrate high-speed intravascular OCT in vivo, acquiring images at a rate of 350 frames per second. A 47-mm-long rabbit aorta was imaged in 3.7 seconds, after a short flush with contrast agent. The longitudinal imaging pitch was 34 micrometers, comparable to the transverse imaging resolution of the system. Three-dimensional volume rendering showed greatly enhanced visualization of tissue microstructure and stent struts, relative to what is provided by conventional intravascular imaging speeds.

Polycarprolacton으로 표면 수식된 나노 산화철 조영제의 합성에 관한 연구

  • 박동규;박지애;장용민;강덕식
    • Proceedings of the KSMRM Conference
    • /
    • /
    • pp.35-35
    • /
    • 2003
  • 목적: 나노 산화철 입자 및 생고분자인 PCL(Polycarprolacton)로 표면 코팅한 T2 MR 조영제를 합성하고 동물 종양 모델을 이용하여 In vivo 특성을 조사하고자 하였다. 대상 및 방법: $FeC1_2$.$4H_2$O와 $FeC1_3$.$6H_2$O을 무게비를 1:2로 정량하여 첨가하고 NaOH 혹은 TMAOH로 pH를 조절한후 PCL를 첨가하여 magnetite가 생성되는 동시에 고분자로서 코팅을 한후 증류수로 여러번 씻어준다. TEM, SEM, DLS 및 IR spectroscopy와 SQUID등을 측정하여 최종 반응물의 입자크기, 자성, 코팅 상태등을 평가하였다. 최소의 입자크기를 형성하는데 필요한 실험 조건을 찾기 위해 반응온도, 코팅할 고분자의 함량, 교반속도별로 실험하여서 최적의 조건을 찾으려 하였다. 토끼의 간에 VX2 암종을 이식한 동물 모델을 이용하여 PCL로 표면 코팅된 나노자성체의 in vivo 영상 특성을 알아보았다.

  • PDF

Nuclear Imaging of Cellular Proliferation (핵의학적 세포증식 영상)

  • Yeo, Jeong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

Usefulness of $^{99m}Tc$-labeled RBC Scan and SPECT in the Diagnosis of Head and Neck Hemangiomas (두경부 혈관종 진단시 $^{99m}Tc$-RBC Scan and SPECT 검사의 유용성)

  • Oh, Shin-Hyun;Roh, Dong-Wook;Ahn, Sha-Ron;Park, Hoon-Hee;Lee, Seung-Jae;Kang, Chun-Goo;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Purpose: There are various methods to diagnose hemangioma, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine. However, by development of SPECT imaging, the blood-pool scan using $^{99m}Tc$-labeled red blood cell has been used, because it was non-invasive and the most economical method. Therefore, in this study, we proposed that the usefulness of $^{99m}Tc$-RBC scan and SPECT of the head and neck to diagnose unlocated hemangiomas. Materials and Methods: $^{99m}Tc$-RBC scan and SPECT was performed on 6 patients with doubtful hemangioma (4 person, head; 1 person, neck; 1 person, another). We labeled radiopharmaceutical using modified in vivo method and then, centrifuged it to remove plasma. After a bolus injection of tracer, dynamic perfusion flow images were acquired. Then, anterior, posterior, both lateral static blood-pool images were obtained as early and 4 hours delayed. SPECT was progressed 64 projections per 30 seconds. Each image was interpreted by physicians, Nuclear medicine specialist, and technologist blinded to patient's data. Results: In 5 patients of all the radioactivity of doubtful site didn't change in flow images, but, in blood-pool, delayed and SPECT images, it was increased. So, it was a typical hemangioma finding. The size of lesion was over 2 cm, and it could discriminate as comparing to the delayed and SPECT imaging. On the other hand, in 1 patient, the radioactivity was increased in blood-pool images, but, not in delayed and SPECT images, so, it was proved no hemangioma. Conclusion: Using $^{99m}Tc$-RBC Scan and SPECT, we could diagnose the hemangiomas in head and neck, as well as, liver, more non-invasive, economical, and easy. Therefore, it considered that $^{99m}Tc$-RBC scan and SPECT would offer more useful information for diagnosis of hemangioma, rather than otherimaging such as US, CT, MRI.

  • PDF

Effect of Poly(Lactide-Co-Glycolide) Nanoparticles on Local Retention of Fluorescent Material: An Experimental Study in Mice

  • Kang, Yeonah;Lee, Eugene;Lee, Joon Woo;Kim, Sung Rae;Kang, Myung Joo;Choi, Young Wook;Ahn, Joong Mo;Kang, Yusuhn;Kang, Heung Sik
    • Korean Journal of Radiology
    • /
    • v.19 no.5
    • /
    • pp.950-956
    • /
    • 2018
  • Objective: Poly(lactide-co-glycolide) (PLGA) nanoparticles are promising materials for the development of new drug-releasing systems. The purpose of this study was to evaluate the in vivo retention time of materials loaded in nanoparticles as compared with that of the material alone by in vivo imaging in nude mice. Materials and Methods: Mice (n = 20) were injected with 0.1 mL fluorescent material 1,1'-dioctadecyl-3,3,3',3' tetramethylindotricarbocyanine iodide (DiR)-loaded PLGA nanoparticles (200 nm) into the right paraspinal muscle, and the same volume of pure DiR solution was injected into the left paraspinal muscle. Fluorescence images were obtained using an in vivo optical imaging system. Fluorescent images were taken 1 day after the injection, and seven more images were taken at 1-week intervals. Image analysis was done with ImageJ program, and one region of interest was chosen manually, which corresponded to the highest signal-intensity area of fluorescence signal intensity. Results: After 7 weeks, 12 mice showed a right-sided dominant signal, representing the DiR loaded PLGA nanoparticles; 5 mice showed a left-side dominant signal, representing the free DiR solution; and 3 mice showed no signal at all beginning 1 day after the injection. During the 7-week period, the mean signal intensities of the free DiR solution and DiR-loaded PLGA nanoparticles diverged gradually. On day 1, the mean signal intensity of free DiR solution was significantly higher than that of DiR-loaded PLGA (p < 0.001). Finally, by week 7, DiR-loaded PLGA express significantly high signal intensity compared with free DiR solution (p = 0.031). Conclusion: The results of the current study suggested that therapeutic agents bound to PLGA nanoparticles may exhibit prolonged retention times.

A Study of T1 Relaxation and Data Management of Animal Images based on Marquardt Algorithm for MRI (비선형 Marquardt 알고리듬을 기초로 활용하는 동물실험을 위한 T1 영상의 예비연구)

  • Yoon, Seong-Ik;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • /
    • pp.56-58
    • /
    • 2004
  • MRI analysis and weights of molecular differences of Volume of Interest(VOI) was studied in animal. The appearance of tiny voxels significant objects for evaluate of disease or irregular function of cells is simplified remodeling before making image. The method of Marquardt, A method of Non-linear mathematical approach can be used to get a quick calculations in arbitrary space. Results shows the relationships between accurate vivo signal and biochemical molecular solutions,

  • PDF

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

Display-Pixel-Based Focusing Method for Ultrasound Imaging (의료 초음파 영상을 위한 화소단위 집속기법)

  • 황재섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.419-431
    • /
    • 2000
  • In this paper, a new beamforming technique is proposed, which can completely eliminate all the artifacts caused by digital scan converter. In the proposed method, named display-pixel-based focusing(DPBF) by the authors, ultrasound waves are focused directly at the display pixels instead of sampling points on the polar coordinate. Consequently. the DPBF system does not require the digital scan converter. To verify the proposed method, we modified a commercial scanner and performed experiments with a 3.5 MHz convex array and a 7.5 MHz linear array. We also defined and measured ICRA/B(Image Coarseness Ratio) to compare the image quality quantitatively. The experimental results with in vivo and in vitro data show that the proposed method improves the ICRA/B considerably, resulting in much smoother and finer images.

  • PDF

Gene Transfer in Normal and Ischemic Tibialis Anterior Muscle of Rat by In Vivo Electroporation

  • Kim, Ji-Sook;Shim, Hyung-Jin;Kim, Hong-Jin;Choi, Kyung-Hee;Kim, Jung-Woong;Kwak, Byung-Kook
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • The purpose of this preliminary study is to improve the efficiency of gene transfer of nonviral plasmid DNA by in vivo electroporation in ischemic hindlimb muscle, tibialis anterior. Hindlimb ischemic model was aseptically made by excision of left femoral artery. Each $50\;{\mu}g$ of pEGFP-C1 and pGL3-control in $100\;{\mu}l$ 0.9% NaCl was injected in tibialis anterior muscle. In vivo electroporation was applied on the same site with 10 mm-distance 2 needle array electrodes and ECM830. In 3 groups of normal rat with different electric field strength 0, 200 and 800 V/cm, the expression of pEGFP-C1 was comparatively evaluated. In 8 groups of normal rats, the expression of pGL3-control was evaluated in 0, 40, 50, 80, 100, 150, 200 and 300 V/cm of electric field strength. In 5 groups of ischemic models, the expression of pGL3-control was analyzed on 0, 4, 7, 10 and 14 days elapsed after making ischemic models. In 9 groups of ischemic rats, the expression of pGL3-control was analyzed in the electric field strength 0, 60, 70, 80, 100, 150, 200, 250 and 300 V/cm. GFP expressions in normal tibialis anterior were high in the extent and degree in order of electric field strength of 200, 800 and 0 V/cm. Luciferase value was highest in $50{\sim}100\;V/cm$ electric field strength. In the case of ischemic models, luciferase expression was significantly increasing in the order elapsed time after making the model. The degree of luciferase expression was higher in cases of application of in vivo electroporation than in that of non-application and was highest in $100{\sim}150\;V/cm$. In conclusion, in vivo electroporation is effective in transfer and expression of plasmid DNA in normal and ischemic tibialis anterior of rat.

  • PDF