• 제목, 요약, 키워드: infrared

검색결과 7,569건 처리시간 0.084초

원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구 (Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property)

  • 홍소야;이창환;김주용
    • 한국염색가공학회지
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.

반사 적외선 사진을 위한 평판 스캐너의 개발 (Development of a Flatbed Scanner for Reflection Infrared Photography)

  • 최영호;황민구;하동환
    • 한국콘텐츠학회논문지
    • /
    • v.11 no.4
    • /
    • pp.57-66
    • /
    • 2011
  • 현재 디지털 카메라가 적외선 카메라로 예술과 법과학 분야에서 활용 되고 있다. 하지만 디지털 카메라는 촬영이나 광원과 같은 기본적인 이론에 대한 이해가 필요하다는 단점이 있기 때문에 본 논문에서는 적외선 평판 스캐너를 개발하였다. 적외선 카메라의 개발 과정은 다음과 같다. 첫 번째, 가시광선용 형광램프를 적외선 LED로 교체하였다. 두 번째, 완전한 적외선 평판 스캐너를 위하여 유리판 위해 810nm이상 투과가 가능한 롱 패스 필터를 장착하였다. 적외선 디지털 카메라는 촬영을 할 경우 매번 적외선 광원을 조사(Irradiation)해 주어야 하는 번거로움과 가시광선 과 다른 적외선의 특성으로 인하여 생기는 초점문제 그리고 직접 컴퓨터로 옮겨야 하는 작업들이 여전히 존재한다. 이러한 문제를 개선하기 위해 본 논문에서 개발한 적외선 평판 스캐너는 적외선 광원을 개별적으로 조사할 필요가 없으며, 최소 2mm 이상 되는 피사계 심도로 인하여 초점 문제가 없다. 또한 적외선 평판 스캐너는 일반 평판 스캐너와 마찬가지로 12800dpi의 고해상도를 만들어 낼 수 있다는 것 역시 장점으로 작용한다. 본 논문에서 개발한 적외선 평판 스캐너가 많은 분야에서 활용되기를 기대한다.

해상환경에서 함정 적외선 신호 측정 및 예측결과 비교 분석 연구 (A Comparative Study between Measurement and Prediction Results of a Naval Ship Infrared Signature in the Marine Environment)

  • 김정호;김윤식
    • 대한조선학회논문집
    • /
    • v.48 no.4
    • /
    • pp.336-341
    • /
    • 2011
  • Ship infrared signature is the cause of detection and tracking by infrared sensor and anti-ship missile seeker. Recent warships have been applied the infrared stealth technology to reduce own ship infrared signature and tested to validate own ship infrared signature level. This study describes the two issues. Firstly, we describe the infrared measurement concept and infrared signature level establishment method that have been performed. Secondly, we compare and analyze the error components between the infrared measurement and simulation result.

에지 검출 방법을 이용한 열화상 카메라의 영상 개선 (Image Enhancement of an Infrared Thermal Camera Using Edge Detection Methods)

  • 정민철
    • 반도체디스플레이기술학회지
    • /
    • v.15 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • This paper proposes a new image enhancement method for an infrared thermal image. The proposed method uses both Laplacian and Prewitt edge detectors. Without a visible light, it uses an infrared image for the edge detection. The method subtracts contour images from the infrared thermal image. It results black contours of objects in the infrared thermal image. That makes the objects in the infrared thermal image distinguished clearly. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using various infrared thermal images. The results show that the proposed method is successful for image enhancement of an infrared thermal image.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

AKARI near Infrared spectroscopy of luminous infrared galaxies

  • 이종철;황호성;이명균
    • 천문학회보
    • /
    • v.37 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2012
  • We present the results of near infrared (2.5-5 micron) spectroscopy of nearby luminous infrared galaxies (LIRGs) using AKARI. The LIRG catalog is constructed from the cross-correlation between the Infrared Astronomical Satellite and the Sloan Digital Sky Survey data, and optically non-Seyfert type LIRGs are selected for main targets. We search for optically elusive active galactic nuclei (AGNs), based on the strengths of 3.3 micron polycyclic aromatic hydrocarbon emission and dust absorption features at 3-4 micron. We investigate the hidden AGN fraction as a function of the infrared luminosity and correlation between optical and near infrared star formation indicators.

  • PDF

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • 한국의류학회지
    • /
    • v.43 no.4
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

CAVITY OF CREATION FOR COLD FUSION AND GENERATION OF HEAT

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • /
    • pp.3-12
    • /
    • 1996
  • Cold fusion technologies now are being developed very successfully. The $\pi$-far infrared rays are generated from three dimensional crystallizing $\pi$-bondings of oxygen atoms in water molecules. The growing cavity in water molecules make near resonance state and a vortex of infrared rays and attracts $\pi$-far infrared rays in the water. The cavity surrounded by a lot of $\pi$-far infrared rays has a very strong gravitational field. The $\pi$-far infrared rays are contracted into $\pi$-far infrared rays of half wave length and of one wave length. The $\pi$-far infrared rays of half wave length generate heat while $\pi$-far infrared rays of one wave length are contracted into $\pi$-gamma rays of one wave length. The contracted $\pi$-gamma rays of one wave length make nucleons and mesons, which is the creation and transmutation of matter by covalent bondings and three-dimensional crystallizing $\pi$-bondings into implosion bonding. Patterson power cell generates a very strong gravitational cavity because the electrolysized oxygen atoms make $\pi$-far infrared rays than in plain water.

  • PDF

적외선 열화상 기술의 최신 연구 동향과 발전 현황 (Recent Advancement and Development on Infrared thermography Technique)

  • 김효종;김정국;김남포
    • 한국철도학회:학술대회논문집
    • /
    • /
    • pp.1109-1117
    • /
    • 2011
  • All objects emit infrared above absolute temperature 0K. Infrared thermography is one of the nondestructive testing technologies to measure the temperature of the object. Infrared thermography shows infrared image which in a longer wavelength than visible light. Infrared technology can be employed regardless of the type or state of the objects. Thus, infrared thermography technique has been used in a wide variety of manufacturing processes in areas such as mechanical, electrical, chemical and medical applications. The advancement of using infrared technology has been increasing. In this paper, the principle of lock-in infrared thermography and its applications were investigated, and the direction of future development was discussed.

  • PDF