• Title, Summary, Keyword: infrared

Search Result 7,705, Processing Time 0.053 seconds

Drying Characteristics of Squids According to Far Infrared and Heated Air Drying Conditions (원적외선과 열풍 건조조건에 따른 오징어의 건조특성)

  • Kang, Tae-Hwann;Hong, Hyun-Gi;Jeon, Hong-Young;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • Drying characteristics of squids under two dry conditions were investigated using far infrared and heated air. Dry temperatures of 40, 50 and $60^{\circ}C$ with air speed of 0.6, 0.8 and 1.2 m/s were used for evaluating far infrared squid drying. Heated air squid drying at 40 and $50^{\circ}C$ with air speed of 0.8 m/s was used as a control treatment. The two drying were evaluated in terms of drying rate, color, TBA value, aerobic bacteria, cutting shear, penetration strength, and energy consumption. The drying rate of far infrared drying was relatively faster than that of heated air drying. The drying time of far infrared drying was reduced as the drying temperature increased. The color difference of far infrared dried squids was from 18.81 to 22.85, and heated air dried squid had the color different from 23.94 to 24.09. Far infrared dried squid had relatively smaller TBA values that indicate a level of rancidity. The aerobic bacteria of heated air dried squid increased from $970{\times}10^3$ to $40,000{\times}10^3$ CFU/g before and after drying, respectively. Far infrared dried squid had relatively smaller increase (from $970{\times}10^3$ to $40,000{\times}10^3$ CFU/g). The cutting shear and penetration strength for far infrared dried squids was relatively lower. In addition, far infrared squid drying consumed relatively less energy compared to heated air drying.

Far Infrared Rays Drying Characteristics of Tissue Cultured Mountain Ginseng Roots (산삼배양근의 원적외선 건조특성)

  • Li, H.;Kwang, T.H.;Ning, X.F.;Cho, S.C.;Han, C.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • This study was conducted to investigate the drying characteristics of tissue cultured mountain ginseng roots. The far infrared rays dryer of a double blast system used for this experiment can control the drying parameters such as far infrared heater temperature and air velocity. The far infrared rays drying tests of tissue cultured mountain ginseng roots were performed at air velocity of 0.4, 0.6, 0.8 m/s, under drying air temperature of 50, 60, and $70^{circ}C$, respectively. The results were compared with one obtained by the heated air drying method. The drying characteristics such as drying rate, color, energy consumption, saponin components and antioxidant activities were analyzed. The results showed that the drying rate of far infrared rays drying was faster than that of heated air drying and due to high temperature of drying air and fast air velocity, the far infrared rays drying of double blast type was superior to the heated air drying. The value of the color difference for heated air drying was 10.11${\sim}$12.99 and that of far infrared rays drying was in the range of 7.05${\sim}$7.54, which was in the same drying condition, also energy consumption of far infrared rays drying was in the range of 3575${\sim}$6898 kJ/kg-water. At the same time, the antioxidant activities using far infrared rays drying were higher than those using heated air drying.

An Experimental Study on the Relationship Between Temperature and Pressure Inside the Cup During Cupping Procedures

  • Lee, Ha Lim;An, Soo Kwang;Lee, Jae Yong;Shim, Dong Wook;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.38 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • Background: Pressure changes related to temperature variation during cupping may lead to dropout. This study aimed to investigate pressure changes related to temperature variations in the cup during the cupping procedure. Methods: Changes in temperature and pressure were measured for 15 minutes after the procedure was performed using the alcohol rub method with glass cups and with the addition of infrared irradiation. Changes in temperature and pressure were also measured for 15 minutes after pumping 3 times using the valve suction method, and with the addition of infrared irradiation. Results: In a comparison between the alcohol rub method with glass cups and with the addition of infrared irradiation, the negative pressure increased over time in the absence of infrared irradiation, whereas it decreased when performed with infrared irradiation p = 0.094. However, in a comparison between pumping 3 times using the valve suction method, and with the addition of infrared irradiation, the negative pressure decreased in both cases, but this was more significant with infrared irradiation p = 0.172. There was a significantly higher temperature in the glass cups (p = 0.004) and the valve cups (p = 0.001) exposed to infrared radiation, compared with no infrared irradiation. Conclusion: The reduction in negative pressure inside the cups exposed to infrared radiation was greater than without infrared irradiation. Temperature increases inside the cup can lead to the risk of dropout.

Effect of Far-Infrared Finishing on Brassiere Pad

  • Shin Jung-Sook
    • The International Journal of Costume Culture
    • /
    • v.8 no.2
    • /
    • pp.124-131
    • /
    • 2005
  • This study focused on the change of skin temperature by the emissivity and emission power of far-infrared for conformant far infrared effect to naked eyes. The study method is to manufacture the bra pad by each concentration on far-infrared materials of illite powder $(K,H_3O)AI_2(Si,Al)_4O_{10}(H_2O,OH)_2)$, liquid alumina ($Al_2O_3$), the extracted liquid from 29 kind of medical plants, then, measured change of skin temperature. Result are as follows. Far-infrared were emitted each $90.2\%,\;90.1\%,\;89.7\%$ from the illite powder, liquid alumina, extracted liquid from medical plants. When the testee weared the bra pad, the temperature of coated bra pad was $0.5^{\circ}C$ higher than the non finished bra pad. Washing fastness on far-infrared finishing was better dope addition method than coating method.

  • PDF

THE ASTRO-F ALL SKY SURVEY

  • PEARSON CHRIS;LEE HYUNG MOK;TEAM ASTRO-F
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • ASTRO-F is the next generation Japanese infrared space mission of the Institute of Space and Astronautical Science. ASTRO-F will be dedicated to an All Sky Survey in the far-infrared in 4 bands from 50-200microns with 2 additional mid-infrared bands at 9microns and 20microns. This will be the first all sky survey in the infrared since the ground breaking IRAS mission almost 20 years ago and the first ever survey at 170microns. The All Sky Survey should detect 10's of millions of sources in the far-infrared bands most of which will be dusty luminous and ultra-luminous star forming galaxies, with as many as half lying at redshifts greater than unity. In this contribution, the ASTRO-F mission and its objectives are reviewed and many of the mission expectations are discussed.

A Study on Performance Test Methods for Cooled Infrared Detector (냉각형 적외선 검출기 성능평가 기술 연구)

  • Kim, Jae-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.542-550
    • /
    • 2010
  • Cooled infrared detector is widely used as the core part in a variety of the thermal imaging systems. For the selection of the highly reliable cooled infrared detector with good performance, it is necessary for us to possess the characterization methods of the well defined performance index of cooled infrared detector. In this paper, various performance index of the cooled infrared detector including reliability as well as the optical and cooling performance of cooled infrared detector are defined and their characterization methods will be investigated and implemented systematically.

Infrared Imaging for Screening Breast Cancer Metastasis Based on Abnormal Temperature Distribution

  • Ovechkin Aleck M.;Yoon Gilwon
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.157-161
    • /
    • 2005
  • Medical infrared imaging is obtained by measuring the self-emitted infrared radiance from the human body. Infrared emission is related to surface temperature and temperature is one of the most important physiological parameters related to health. Though recent applications such as security identification and oriental medicine have provided new fields of biomedical applications, infrared thermography has had ups and downs in its usages in cancer detection. Some of the main difficulties include finding proper applications and efficient diagnostic algorithms. In this study, infrared thermal imaging was used to detect regional metastasis of breast cancer. Our measurements were done for 110 women. From 63 individuals of a Healthy Group and a Benign Breast Disease Group, we developed algorithms for differentiating malignant regional metastasis based on temperature difference and asymmetry of temperature distribution. Testing with 47 cancer patients, we achieved a positive predictive value of $87.5\%$ and a negative predictive value of $95.6\%$. The results were better than for mammogram examination. A proper analysis of infrared imaging proved to be a highly informative and sensitive method for differentiating regional cancer metastasis from normal regions.

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

Heat Analysis of Welding-bead using Infrared Thermoimage Camera (적외선 열화상 카메라를 이용한 용접 비드의 열 해석)

  • Kim, Jae-Yeol;Shim, Jae-Gi;Yang, Dong-Jo;Yu, Sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • /
    • pp.57-62
    • /
    • 2000
  • Diagnosis or measurements using Infrared thermoimage hasn't been available. A quick diagnosis and thermal analysis can be possible when that kind of system is introduced to the investigation of each part. In this study, Infrared Camera, Thermovision 900 was used in order to investigate. Infrared Camera usually detects only Infrared wave from the light in order to illustrate the temperature distribution. Infrared diagnosis system can be applied to various field. Also, it is more effective to analyze temperature distribution on the welding parts during welding process. Especially, diagnosis using Infrared camera plays an important role on thermal analysis of Axle Casing Nut for Commercial Vehicles.

  • PDF