• Title, Summary, Keyword: invariant

Search Result 1,957, Processing Time 0.049 seconds

Characteristic Genera of Closed Orientable 3-Manifolds

  • KAWAUCHI, AKIO
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.753-771
    • /
    • 2015
  • A complete invariant defined for (closed connected orientable) 3-manifolds is an invariant defined for the 3-manifolds such that any two 3-manifolds with the same invariant are homeomorphic. Further, if the 3-manifold itself can be reconstructed from the data of the complete invariant, then it is called a characteristic invariant defined for the 3-manifolds. In a previous work, a characteristic lattice point invariant defined for the 3-manifolds was constructed by using an embedding of the prime links into the set of lattice points. In this paper, a characteristic rational invariant defined for the 3-manifolds called the characteristic genus defined for the 3-manifolds is constructed by using an embedding of a set of lattice points called the PDelta set into the set of rational numbers. The characteristic genus defined for the 3-manifolds is also compared with the Heegaard genus, the bridge genus and the braid genus defined for the 3-manifolds. By using this characteristic rational invariant defined for the 3-manifolds, a smooth real function with the definition interval (-1, 1) called the characteristic genus function is constructed as a characteristic invariant defined for the 3-manifolds.

Feasible and Invariant Sets For Input Constrained Linear Parameter Varying Systems

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1911-1916
    • /
    • 2003
  • Parameter set of an LPV system is divided into a number of subsets so that robust feedback gains may be designed for each subset of parameters. A concept of quasi-invariant set is introduced, which allows finite steps of delay in reentrance to the set. A feasible and positively invariant set with respect to a gain-scheduled state feedback control can be easily obtained from the quasi-invariant set. A receding horizon control strategy can be derived based on this feasible and invariant set.

  • PDF

An Adaptive Controller Cooperating with Fuzzy Controller for Unstable Nonlinear Time-invariant Systems (불안정 비선형 시불변 시스템을 위한 퍼지제어기가 결합된 적응제어기)

  • Dae-Young, Kim;In-Hwan, Kim;Jong-Hwa, Kim;Byung-Kyul, Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.946-961
    • /
    • 2004
  • A new adaptive controller which combines a model reference adaptive controller (MRAC) and a fuzzy controller is developed for unstable nonlinear time-invariant systems. The fuzzy controller is used to analyze and to compensate the nonlinear time-invariant characteristics of the plant. The MRAC is applied to control the linear time-invariant subsystem of the unknown plant, where the nonlinear time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and a linear time-invariant subsystem. The stability analysis for the overall system is discussed in view of global asymptotic stability. In conclusion. the unknown nonlinear time-invariant plant can be controlled by the new adaptive control theory such that the output error of the given plant converges to zero asymptotically.

WIJSMAN LACUNARY IDEAL INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

  • Dundar, Erdinc;Akin, Nimet Pancaroglu
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.345-358
    • /
    • 2020
  • In this paper, we study the concepts of Wijsman lacunary invariant convergence, Wijsman lacunary invariant statistical convergence, Wijsman lacunary ${\mathcal{I}}_2$-invariant convergence (${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$), Wijsman lacunary ${\mathcal{I}}^*_2$-invariant convergence (${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$), Wijsman p-strongly lacunary invariant convergence ([W2Nσθ]p) of double sequence of sets and investigate the relationships among Wijsman lacunary invariant convergence, [W2Nσθ]p, ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$ and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$. Also, we introduce the concepts of ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence of sets.

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

Digital Filter Design using the Symbol Pulse Invariant Transformation

  • ;Rokuya Ishii
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • In general, when IIR digital filter are designed from analog filters, the bilinera transformation and the impluse invariant tramsformation are commonly used. It is known, however, that high frequency response of digital filters designed by these transformations can not be well approximated to the sampled analog signals. In this paper, the symbol pulse invariant transformation is analyzed theoretically so that the symbol pulse invariant transformation which was originally application to a rectangular pulse is newly applied to double rate pulse signals and generic shape pulse signals. Also, the relation of spectra between a transfer function of digital filter and one of analog filter is considered. Further, we apply to design the digital high pass filters using the symbol pulse invariant transformation method.

  • PDF

INVARIANT CUBATURE FORMULAS OVER A UNIT CUBE

  • Kim, Kyoung-Joong;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.913-931
    • /
    • 1998
  • Using invariant theory, new invariant cubature formulas over a unit cube are given by imposing a group structure on the formulas. Cools and Haegemans [Computing 40, 139-146 (1988)] constructed invariant cubature formulas over a unit square. Since there exists a problem in directly extending their ideas over the unit square which were obtained by using a concept of good integrity basis to some constructions of invariant cubature formulas over the unit cube, a Reynold operator will be used to obtain new invariant cubature formulas over the unit cube. In order to practically find integration nodes and weights for the cubature formulas, it is required to solve a system of nonlinear equations. With an IMSL subroutine DUNLSF which is used for solutions of the system of nonlinear equations, we shall give integration nodes for the new invariant cubature formulas over the unit cube depending on each degree of polynomial precision.

  • PDF

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

Exactly Solvable Potentials Derived from SWKB Quantization

  • Sun, Hosung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.805-810
    • /
    • 2014
  • The shape invariant potentials are proved to be exactly solvable, i.e. the wave functions and energies of a particle moving under the influence of the shape invariant potentials can be algebraically determined without any approximations. It is well known that the SWKB quantization is exact for all shape invariant potentials though the SWKB quantization itself is approximate. This mystery has not been mathematically resolved yet and may not be solved in a concrete fashion even in the future. Therefore, in the present work, to understand (not prove) the mystery an attempt of deriving exactly solvable potentials directly from the SWKB quantization has been made. And it turns out that all the derived potentials are shape invariant. It implicitly explains why the SWKB quantization is exact for all known shape invariant potentials. Though any new potential has not been found in this study, this brute-force derivation of potentials helps one understand the characteristics of shape invariant potentials.