• Title, Summary, Keyword: ion-selective electrode

Search Result 175, Processing Time 0.046 seconds

Determination of Verapamil with ISE based on Ion Exchanger (이온교환체 전극을 이용한 베라파밀 정량)

  • Lee, Eun-Yup;Kim, Dong-O;Chang, Seung-Hyun;Hur, Moon-Hye;Ahn, Moon-Kyu
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.135-140
    • /
    • 1996
  • Ion-selective poly(vinyl chloride)(PVC) membrane electrodes for the determination of the calcium antagonist verapamil and its pharmaceutical preparations were described. Verapam il-superchrome garnet Y(SGY), lumogallion(LG), acid red 97(AR97), Dragendorff(DD) and Meyer reagent ion pairs were inverstigated as an electroactive compound for membrane electrode. Stable potentiometric response was obtained with azo dye at pH 6.5-4.0 and with DD, and Meyer reagent at pH 6.5-3.0. The best plasticizer was 49w/w% 2-nitrophenyl octyl ether for azo dye, and 65.3w/w% tri(n-butyl) citrate for DD and Meyer reagent. Potentiometric response slopes of optimized membrane electrodes based on SGY, LG, AR97, DD, and Meyer complex for verapamil were 52.49, 54.88, 50.81, 54.13 and 49.31 mV/dec., respectively. Lower limits of linear range were $1.0{\times}10^6M$ for SGY, LG, and AR97, while those for DD and Meyer reagent were $4{\times}10^{-6}M$. Detection limits for all these electrodes were $1{\times}10^{-5}M,\;4{\times}10^{-6}M,\;1.8{\times}10^{-6}M,\;8{\times}10^{-7}M,\;and\;1{\times}10^{-6}M$ with relative standard deviation of 2.56, 3.6, 3.96, 2.56, 3.20%, respectively.

  • PDF

Complexation of Cadmium(Ⅱ) with Humic Acids: Effects of pH and Humic Acid Origin

  • Lee, Mee-Hae;Choi, Se-Young;Chung, Kun-Ho;Moon, Hi-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.726-732
    • /
    • 1993
  • A comparative study on cadmium(II) complexation with three well characterized humic acids (SHA: soil humic acid from the Okchun Metamorphic Belt; AqHA: aquatic humic acid from Gorleben underground aquifer, Germany; CoHA: commercially available humic acid from the Aldrich Co.) was carried out in 0.1 M $NaClO_4$ at different solution pH(5.0, 5.5, and 6.0) using the ultrafiltration technique. The maximum binding ability (MBA) of the humic acids for cadmium(II) was observed to vary with their origins and solution pH. The results suggest that 1 : 1 complex predominates within the experimental range, and the conditional stability constants were calculated based on the assumption of cooperative binding, yielding log K values that were quite similar (CoHA: 4.17${\pm}$0.08; AqHA: 4.14${\pm}$0.07; SHA: $4.06{\pm} 0.12\;l\;mol^{-1}$ at pH 6.0) irrespective of humic acid origins or pH. By contrast a nonlinear Schatchard plot was obtained, using the cadmium(II) ion selective electrode speciation analysis method, which indicated that humic acid may have two or more classes of binding sites, with $log\;K_1\;and\;log\;K_2$ of 4.73${\pm}$ 0.08 and $3.31{\pm}0.14\;l\;mol^{-1}$ respectively.

  • PDF

Improvement of the Degreasing Performance of Surface Treating Steel Sheet by the Automatic Control of Alkaline Degreasing Process (알칼리탈지공정 자동화관리에 의한 표면처리용 강판의 탈지능 향상)

  • 박노범;박대수;박정렬;유민수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1996
  • Experiments on the automatic control of NaOH concentration and on the spraying condition of NaOH solution in the alkaline degreasing process of a continuous hot-dip galvanizing line have been carried out in order to improve degreasing performance of a galvanizing sheet steel using laboratory degreasing and galvanizing simulators. The concentration of NaOH for the good degreasing has been determined to be 6.0% and more and this concentration has been able to be automatically well controlled within $\pm$0.1% by employing a solution electrical conductivity meter under a flow injection analysis condition rather than by employing a sodium ion selective electrode in the degreasing simulator. Frequent blocking of the spraying nozzles of the solution has been reduced considerably by the set-up and periodical operation of an automatic valve system in the nozzle system. By applying this automatic valve system and by automatic controlling the NaOH concentration and other ordinary variables in the degreasing process, the degreasing performance has been increased from the conventional 76% to the new 85%.

  • PDF

Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry

  • Attar, Tarik;Harek, Yahia;Larabi, Lahcen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.568-573
    • /
    • 2013
  • A selective and sensitive method for simultaneous determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The procedure involves an adsorptive accumulation of Cu(II)-ETSC (4- ethyl-3-thiosemicarbazide) on a hanging mercury drop electrode, followed by a stripping voltammetry measurement of reduction current of adsorbed complex at about -715 mV. The optimum conditions for the analysis of copper (II) ion are : pH 10.3, concentration of 4-ethyl-3-thiosemicarbazide $3.25{\times}10^{-6}$ M and an accumulation potential of -100 mV. The peak current is proportional to the concentration of copper over the range 0.003-125 ng/mL with a detection limit of 0.001 ng/mL and an accumulation time of 60 s. Moreover, with the use of the proposed method, there is a considerable improvement in the detection limit, the linear dynamic range and the deposition time, compared with the methods of adsorptive stripping voltammetry for the determination of copper. The developed method was validated by analysis of whole blood certified reference materials.

A Review on the Analytical Techniques for the Determination of Fluorine Contents in Soil and Solid Phase Samples (토양 및 고체시료 중 불소함량 측정기법)

  • An, Jinsung;Kim, Joo-Ae;Yoon, Hye-On
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2013
  • Current status of soil contamination with fluorine and its source were investigated. The basic principles and procedures of various techniques for the analysis of fluorine contents in soil and solid phase samples were summarized in this review. Analysis of fluorine in solid matrices can be achieved by two types of techniques: (i) UV/Vis spectrophotometer or ion selective electrode (ISE) analysis after performing appropriate extraction steps and (ii) direct solid analysis. As the former cases, the standard method of Korean ministry of environment, alkali fusion-ISE method, pyrohydrolysis, oxygen bomb combustion, aqua regia digestion-automatic analysis, and sequential extraction-ISE method were introduced. In addition, direct analysis methods (i.e., X-ray fluorescence spectrometry and proton induced gamma-ray emission spectrometry) and atomic spectrometry combining with the equipment for introducing solid phase sample were also reviewed. Fluorine analysis techniques can be reasonably selected through site-specific information such as matrix condition, contamination level, the amount of samples and the principles of various methods for the analysis of fluorine presented in this review.

Continuous Automated Determination of Urea Using a New Enzyme Reactor (새로운 효소반응기를 이용한 요소의 연속·자동화 정량)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.393-404
    • /
    • 1992
  • The response properties of continuous automated system using an enzyme reactor for determination of urea were investigated. The enzyme reactor was constructed to packed-bed form which filled with nylon-6 beads (42∼48 mesh), which immobilized urease with glutaraldehyde, in teflon tube (2 mm I.D., 20 cm length). The system was composed of the enzyme reactor, gas dialyzer, and tublar PVC-nonactin membrane ammonium ion-selective electrode as an indicator electrode in serial order. The response characteristics of this system were as follows. That is, the concentration range of linear response, slope of linear response, detection limit, and conversion percentage were $5.5{\times}10^{-6}$$2.4{\times}10^{-3}M$, 57.8 mV/decade, $1.5{\times}10^{-6}$, and 80.8%, respectively. The optimum buffer and life time of urease reactor were 0.01M Tris-HCl buffer solution (pH 7.0∼7.8) and 0.01M phosphate buffer solution (pH 6.9∼7.5) and about 150 days, respectively. And the urease reactor had no interferences of the other physiological materials.

  • PDF

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO (TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구)

  • Choi, M.K.;Ahn, C.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process (미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh;Esashi Masayoshi
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi (구미 불산 누출사고 지점 주변 식물의 불소화합물 농도 분포 및 공기 중 불화수소 농도 추정에 관한 연구)

  • Gu, Seulgi;Choi, Inja;Kim, Won;Sun, Oknam;Kim, Shinbum;Lee, Yungeun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.346-353
    • /
    • 2013
  • Objectives: The goal of this study is to identify the distribution of the foliar fluorine content of vegetation surrounding the area where hydrofluoric acid was accidently released in Gumi, Gyeongsangbuk-do on September 27, 2012. In addition, it also aims to estimate the concentration of hydrogen fluoride in the air on the day of the accident. Methods: Samples of plant leaves were collected on October 7, 2012 within 1 km from the site where the accident occurred. These samples were analyzed for soluble fluorine ion with an ion selective electrode. The ambient concentration of hydrogen fluoride was calculated using the fluoride content in the plant via the dose-rate equation (${\Delta}F$=KCT). Results: The arithmetic and geometric means of the concentrations were 2158.2 and 1183.7mg F $kg^{-1}$ for leaves and, 2.4 and 1.1 ppm HF for the air, respectively. The highest concentration of hydrogen fluoride in the air was 14.7 ppm, which is higher than the maximum concentration reported by the government (1 ppm) and the exposure limit (ceiling, 3 ppm). The concentrations of both fluorine and hydrogen fluoride decreased with increasing distance from the accident site and showed a significant decrease outside of a 500m radius from the site (p <0.05). Conclusions: The area around the accident site was highly polluted with hydrogen fluoride according to the results of this study. Considering the persistency of hydrogen fluoride in the environment, long-term monitoring and environmental impact assessment should be pursued.