• Title, Summary, Keyword: ionic elastomer

Search Result 4, Processing Time 0.038 seconds

Thermo-reversible Crosslinking Elastomer through Supramolecular Networks (초분자 네트워크를 이용한 열가역성 가교 탄성체)

  • Bae, Jong-Woo;Oh, Sang-Taek;Kim, Gu-Ni;Baik, Hyen-Jong;Kim, Won-Ho;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.165-169
    • /
    • 2010
  • Recently supramolecular network thermo-reversible crosslinking elastomer having flexibility, various functionality, and advantages of thermoplastic elastomer (TPE) such as recycle and easy processbility is introduced. Although thermo-reversible bonds such as hydrogen bond and ionic cluster is recognized as a common technology since 1990, control technology of bonding and dissociation of crosslink in supramolecular network is a recent technology. In this review, characteristics of thermo-reversible crosslinking elastomer having rheological properties of TPE and reinforcing behaviors of thermoset elastomer are summarized.

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide (Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구)

  • Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • We synthesized thermoplastic polyurethane elastomer(TPU) with acid group and nano zinc oxide, and characterized their mechanical properties, thermal properties, contact angle and grip property. The effects of the zinc oxide content and size on the physical property of TPU were investigated. When the nano zinc oxide was introduced in TPU with acid group, it had excellent mechanical properties and grip by formation of hydrogen and ionic bonding. The wet slip of TPU with zinc oxide was increased continuously as ionization rate increased due to increase of hydrophilicity and ionic interaction, and mechanical properties were increased with increasing ionization rate up to 50%.

Synthesis of Ionic Elastomer Based on Styrene-Butadiene Rubber Containing Methacrylic Acid (Methacrylic Acid가 도입된 Styrene-Butadiene Rubber를 기반으로 한 Ionic Elastomer 합성)

  • Kim, Ki-Hyun;Lee, Jong-Yeop;Choi, Joon-Myeong;Kim, Hee-Jung;Seo, Byeongho;Kim, Bong-Soo;Kwag, Gwang-Hoon;Paik, Hyun-Jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • A new terpolymer, styrene-butadiene-benzyl methacrylate copolymer (BzMA-SBR) was synthesized by emulsion polymerization. After polymerization, XSBR ionomer was prepared by deprotection of benzyl group of BzMA through hydrolysis with NaOH. Carboxyl group contents can be controlled by changing the initial feed contents of BzMA. Structure of BzMA-SBR and XSBR were characterized by FTIR, $^1H$ NMR and DSC.

A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives (첨가제에 따른 변성 스티렌계 열가소성 엘라스토머의 마찰에 의한 표면 파괴 거동 연구)

  • Jeon, Jun-Ha;Park, Sang-Min;Lee, Jin- Hyok;Um, Gi-Yong
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2015
  • In this work, we observed the effect of silica, zinc oxide, zinc ion coated silica on carboxylic acid modified styrenic thermoplastic elastomer (m-TPS) film for friction-induced surface fracture. m-TPS film added general silica showed poor mechanical properties, anti-abrasion and friction-induced surface fracture, caused by strong filler-filler interaction of silica. In case of m-TPS films added zinc oxide or zinc ion coated silica, mechanical properties, anti-abrasion and friction-induced surface fracture were improved due to forming ionic cluster between carboxylic acid group of m-TPS and zinc ion. Ionic cluster were confirmed by FT-IR analysis that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$.