• Title/Summary/Keyword: irrigation reliability

Search Result 1, Processing Time 0.046 seconds

An Irrigation Reliability Assessment of Agricultural Reservoir to Establish Response Plan of Future Climate Change Adaptation (기후변화 대응방안 수립을 위한 농업용 저수지 이수안전도 평가)

  • Kwon, Hyung-Joong;Nam, Won-Ho;Choi, Gyeong-Suk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • This study assessed the reliability of the agricultural water supply based on future climate change scenarios, and suggested plans to improve the reliability in order to promote the adaptability of irrigation water in agricultural reservoirs to climate change. The assessment of agricultural water supply reliability was performed on reservoirs which had a lower water quantity than their design basis and which had recently been subject to drought. In other words, from the irrigation districts of main intake works among the reservoirs managed by the Korea Rural Community Corporation, 1~2 districts in each province-that is, a total of 13 districts -that were recently designated as a district for securing agricultural water (drought prevention district) were selected. Climate change scenarios were applied to the selected districts to analyze their future water supply reliability compared to the current level. All districts selected showed a drought frequency of 4 years or shorter, which demonstrated the need to establish climate change response plans. As plans for responding to climate change, a plan that utilizes supplemental intake works to reduce the area of the irrigation districts of main intake works, and another one that increases the capacity of main intake works were adopted to reanalyze their water supply reliability. When the area of the irrigation districts of main intake works was reduced by about 30~40%, the drought frequency dropped to more than 10 years, securing the reliability of water supply. To secure the reliability by increasing the capacity of main intake works, it was calculated that about 19,000~2,400,000 tons need to be added to each reservoir. In addition, climate change response plans were suggested to improve the reliability of the water supply in each district based on the results of economic analysis.