• Title, Summary, Keyword: lactic acid

Search Result 3,668, Processing Time 0.047 seconds

Separation Characteristics of Lactic Acid by Batch Reactive Distillation (회분식 반응 증류에 의한 lactic acid의 분리 특성)

  • 최종일;홍원희
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.220-224
    • /
    • 1999
  • Lactic acid was reacted with alcohol into lactate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF

Production of Lactic Acid from Water Hyacinth by Lactobacillus spp. (부레옥잠을 이용한 Lactobacillus spp.의 젖산 생산)

  • Jullihar, Randy;Noh, Yong Ho;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.85-89
    • /
    • 2016
  • Lactic acid fermentations were conducted using water hyacinth. It is known that the pretreatment and enzyme hydrolysis process optimize the potential of water hyacinth. Lactic acid produced by using lactic acid bacteria. All cells were grown at $37^{\circ}C$ and initial pH 5.5. Lactic acid production was measured by HPLC. All Lactobacillus strains could produce lactic acid from pretreated water hyacinth. The highest lactic acid was achieved when lactic acid fermentation was carried out by L. delbrueckii for D-form and L. helveticus for L-form lactic acid production. The lactic acid concentration was 10.70 g/L by L. delbrueckii and it converted glucose in the medium to lactic acid, almost perfectly. Lactic acid production became higher when fermentation was carried out at a controlled pH 5.5. Lactic acid yield and productivity were 0.52 g/g and 0.19 g/L/h for L. helveticus, while L. delbrueckii was 0.64 g/g and 0.27 g/L/h. This study showed that water hyacinth medium could be alternative medium which can replace the complex and expensive medium for growing Lactobacillus strains in production of lactic acid.

Synthesis and Characterization of Poly(L-lactic acid-co-glycine-L-lactic acid) and Poly - ( L-1actic acid-co-gl ycine-L-methyl 1actic acid) (생체분해성 고분자의 합성 및 물성에 관한 연구(II) -Poly (L-lactic acid-co-glycine-L-lactic acid) 와 Poly- (L-lactic acid-co-glycine-L-methyl lactic acid))

  • Sung, Yong-Kiel;Song, Dae-Kyung;Park, Kyung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.225-232
    • /
    • 1988
  • Poly (L- lactic acid-co-glycine-L-lactic acid) and Poly (L-lactic acid-co-glycine-L- methyl lactic acid ) have been prepared by ring opening polymerization. The monomer 6, 6-dimethyl morpho-line-2, 5-dione was synthesized by the bromoisobutylation of 2-bromoisobutyryl bromide with glycin e. L-lactide, 6-methyl morpholine-2, 5-diode. and 6, 6-dimethyl morpholine-2, 5-diode have been used as starting materials for polydepsipeptides. The synthesized monomers and copolymers have been identified by NMR and FT-lR spa- ctrophotometer. The thermal propert ies and glass transition temperature(Tg) of the copolymers have been measured by differential scanning calorimetry. The Tg values of poly(L-lactic acid co-glycine-L-lactic acid) system are increased from $53^{\circ}C\; to\; 107^{\circ}C$ with increasing the mole fraction of 6-methyl morpholine-2, 5-diode. And the Tg values of poly(L-lactic acid co-glycine-L-methyl lactic acid) system are increased from $53^{\circ}C\;to\;138^{\circ}C$ with increasing the mole fraction of 6. 6-dimethyl morpholine-2, 5-diode The thermal stability of poly (L-lactic acid-co-glycine-L-methyl lactic acid) is slightly greta text than that of poly(L-lactic acid-co-glycine-L-lactic acid) due to the methyl group.

  • PDF

Simultaneous Saccharification and Extractive Fermentation for Lactic Acid Production (동시당화 및 추출발효에 의한 Lactic Acid 생산)

  • 공창범;우창호;최실호;윤현희
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.212-219
    • /
    • 1999
  • lactic acid production from cellulose by simultaneous saccharification and fermentation(SSF) was studied. The SSF using cellulase enzyme Cytolase CL and Lactobacillus delbrueckii was strongly inhibited by the end product(lactic acid). An ion-exchange resin(RA-400) was used for in-situ product removal during SSF. The sorption capacity of the resin was 200mg/g-resin. The simple SSF and the extractive SSF resulted in lactic acid concentrations of 30.4g/L and 32.0g/L, respectively, at the initial substrate concentration of 50g/L. A model was developed to simulate the extractive SSF. The lactic acid conversion for the initial substrate of 100g/L was estimated to be improved from 60% to 09% by in-situ product removal. The experimentally determined kinectic parameters were pH dependent, and fitted as empirical expressions to establish their values at different pH's. Lactic acid productivity was predicted to be maximum at pH 4.5-5.0.

  • PDF

D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period (Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화)

  • Lee, Kyung-Wook;Shin, Yong-Kook;Baick, Seung-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.168-174
    • /
    • 1998
  • The amount of D(-)-lactic acid in fermented dairy products is very important because the rate of metabolism of D(-)-lactic acid is lower than that of L(+)-lactic acid. The purpose of this study was to investigate the optimum condition during fermentation and storage of yogurt for the formation of isomers of lactic acid by Lactobacillus acidophilus NCFM. The production of acid was excellent at $37^{\circ}C$ of fermentation and the ratio of D(-)-lactic acid was also lower than that of other conditions such as $35^{\circ}C{\;}and{\;}40^{\circ}C$. Among shaking and non-shaking treatment under aerobic condition and anaerobic condition, non-shaking treatment under aerobic condition was the best condition at the production of acid and L(+)-lactic acid during fermentation. During storage at low temperature, a larger amount of L(+)-lactic acid was produced than at higer storage temperature.

  • PDF

Effect of Lactic Acid Bacteria on D- and L-Lactic Acid Contents of Kimchi

  • Jin, Qing;Yoon, Hyang-Sik;Han, Nam-Soo;Lee, Jun-Soo;Han, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.948-953
    • /
    • 2006
  • The D-form of lactic acid is frequently detected in fermented foods, and an excessive dietary intake of D-lactic acid may induce metabolic stress in both infants and patients. This work was carried out to determine the prevailing microorganisms relevant to the accumulation of D-lactic acid in kimchi. Leuconostoc (Leuc.) mesenteroides and Leuc. citreum primarily synthesized D-lactate with a small quantity of L-form. Leuc. gelidum and Leuc. inhae evidenced patterns similar to this. Lactobacillus (Lb.) plantarum and Lb. brevis were shown to convert glucose into a balanced mixture of D-/L-lactic acid, whereas Lb. casei principally synthesized L-lactic acid and a very small quantity of D-lactic acid. When kimchi was incubated at 8 or $22^{\circ}C$, D-lactic acid was over-produced than L-form. Leuconostoc was determined as the primary producer between the initial to mid-phase of fermentation and Lb. plantarum or Lb. brevis seemed to boost D-lactic acid content during later stage of acid accumulation.

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2

  • Wee Young-Jung;Kim Jin-Nam;Yun Jong-Sun;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.

Lactic acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus rhamnosus (전처리된 섬유소계 바이오매스로부터 Lactic acid생산)

  • Ahn, Su Jin;Cayetano, Roent Dune;Kim, Tae Hyun;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Lactic acid, the most widely occurring hydroxy-carboxylic acid, has traditionally been used as food, cosmetic, pharmaceutical, and chemical industries. Even though it has tremendous potential for large scale production and use in a wide variety of applications, high cost lactic acid materials are primarily problems. Lactic acid can be obtained on either by fermentation or chemical synthesis. In recent years, the fermentation approach has become more successful because of the increasing market demand for naturally produced lactic acid. Generally, lactic acid was produced from pure starch or from glucose. As an alternative, biomass which is the most abundant renewable resources on earth have been considered for conversion to readily utilizable hydrolysate. In this study, we conducted the fermentation method to produce L(+)-lactic acid production from pretreated hydrolysate was investigated by Lactobacillus rhamnosus ATCC 10863. The hydrolysate was obtained from pretreatment process of biomass using Ammonia percolation process (AP) followed by enzymatic hydrolysis. In order to effectively enhance lactic acid conversion and product yield, controlled medium, temperature, glucose concentration was conducted under pure glucose conditions. The optimum conditions of lactic acid production was investigated and compared with those of hydrolysate.

Lactic held Bacteria for the Preservation of Fruit and Vegetables (과실 및 채소류의 저장에 있어서 Lactic Acid Bacteria의 이용)

  • 김건희;배은경
    • Korean Journal of Food Preservation
    • /
    • v.6 no.2
    • /
    • pp.245-254
    • /
    • 1999
  • Traditionally, lactic acid bacteria(LAB) is microorganism that has been used for food fermentation. Bacteriocinogenic culture and by-products of lactic acid bacteria have the antimicrobial effect. The antimicrobial effect of lactic acid bacteria enable to extend the shelf life of many foods through fermentation processes. Therefore, a lot of investigation of antimicrobial compounds from LAB have been studied on the effect of foods preservation of fish, meat, dairy product, refreserated nonfermentive food and so on. However a little research on the effects of LAB in fruit and vegetables preservation has been reported. In this study, effectiveness of LAB as a quality preservative in fruit and vegetables storage were reviewed.

  • PDF

Modeling and Simulation of Lactic Acid Fermentation with Inhibition Effects of Lactic Acid and Glucose

  • Lin, Jian-qiang;Lee, Sang-Mok;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • An unstructured mathematical model for lactic acid fermentation was developed. This model was able to predict the inhibition effects of lactic acid and glucose and was con-firmed to be valid with various initial concentrations of lactic acid and glucose. Simulation of energy production was made using this mathematical model, and the relationship between the kinetics of energy metabolism and lactic acid production was also analyzed.