• Title/Summary/Keyword: least squares cross-validation

Search Result 3, Processing Time 0.088 seconds

Bandwidth selections based on cross-validation for estimation of a discontinuity point in density (교차타당성을 이용한 확률밀도함수의 불연속점 추정의 띠폭 선택)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.765-775
    • /
    • 2012
  • The cross-validation is a popular method to select bandwidth in all types of kernel estimation. The maximum likelihood cross-validation, the least squares cross-validation and biased cross-validation have been proposed for bandwidth selection in kernel density estimation. In the case that the probability density function has a discontinuity point, Huh (2012) proposed a method of bandwidth selection using the maximum likelihood cross-validation. In this paper, two forms of cross-validation with the one-sided kernel function are proposed for bandwidth selection to estimate the location and jump size of the discontinuity point of density. These methods are motivated by the least squares cross-validation and the biased cross-validation. By simulated examples, the finite sample performances of two proposed methods with the one of Huh (2012) are compared.

GLOBAL MINIMA OF LEAST SQUARES CROSS VALIDATION FOR A SYMMETRIC POLYNOMIAL KEREL WITH FINITE SUPPORT

  • Jung, Kang-Mo;Kim, Byung-Chun
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.183-192
    • /
    • 1996
  • The least squares cross validated bandwidth is the mini-mizer of the corss validation function for choosing the smooth parame-ter of a kernel density estimator. It is a completely automatic method but it requires inordinate amounts of computational time. We present a convenient formula for calculation of the cross validation function when the kernel function is a symmetric polynomial with finite sup-port. Also we suggest an algorithm for finding global minima of the crass validation function.

MCP, Kernel Density Estimation and LoCoH Analysis for the Core Area Zoning of the Red-crowned Crane's Feeding Habitat in Cheorwon, Korea (철원지역 두루미 취식지의 핵심지역 설정을 위한 MCP, 커널밀도측정법(KDE)과 국지근린지점외곽연결(LoCoH) 분석)

  • Yoo, Seung-Hwa;Lee, Ki-Sup;Park, Chong-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • We tried to find out the core feeding site of the Red-crowned Crane(Grus japonensis) in Cheorwon, Korea by using analysis techniques which are MCP(minimum convex polygon), KDE(kernel density estimation), LoCoH(local nearest-neighbor convex-hull). And, We discussed the difference and meaning of result among analysis methods. We choose the data of utilization distribution from distribution map of Red-crowned Crane in Cheorwon, Korea at $17^{th}$ February 2012. Extent of the distribution area was $140km^2$ by MCP analysis. Extents of core feeding area of the Red-crowned Crane were $33.3km^2$($KDE_{1000m}$), $25.7km^2$($KDE_{CVh}$), $19.7km^2$($KDE_{LSCVh}$), according to the 1000m, CVh, LSCVh in value of bandwidth. Extent, number and shape complexity of the core area has decreased, and size of each core area have decreased as small as the bandwidth size(default:1000m, CVh: 554.6m, LSCVh: 329.9). We would suggest the CVh value in KDE analysis as a proper bandwidth value for the Red-crowned crane's core area zoning. Extent of the distribution range and core area have increased and merged into the large core area as a increasing of k value in LoCoH analysis. Proper value for the selecting core area of Red-crowned Crane's distribution was k=24, and extent of the core area was $18.2km^2$, 16.5% area of total distribution area. Finally, the result of LoCoH analysis, we selected two core area, and number of selected core area was smaller than selected area of KDE analysis. Exact value of bandwidth have not been used in studies using KDE analysis in most articles and presentations of the Korea. As a result, it is needed to clarify the exact using bandwidth value in KDE studies.