• Title, Summary, Keyword: linear time-varying system

Search Result 284, Processing Time 0.05 seconds

Local Drug Delivery System Using Biodegradable Polymers

  • Khang, Gil-Son;Rhee, John M.;Jeong, Je-Kyo;Lee, Jeong-Sik;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.207-223
    • /
    • 2003
  • For last five years, we are developing the novel local drug delivery devices using biodegradable polymers, especially polylactide (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) due to its relatively good biocompatibility, easily controlled biodegradability, good processability and only FDA approved synthetic degradable polymers. The relationship between various kinds of drug [water soluble small molecule drugs: gentamicin sulfate (GS), fentanyl citrate (FC), BCNU, azidothymidine (AZT), pamidronate (ADP), $1,25(OH)_2$ vitamin $D_3$, water insoluble small molecule drugs: fentanyl, ipriflavone (IP) and nifedipine, and water soluble large peptide molecule drug: nerve growth factor (NGF), and Japanese encephalitis virus (JEV)], different types of geometrical devices [microspheres (MSs), microcapsule, nanoparticle, wafers, pellet, beads, multiple-layered beads, implants, fiber, scaffolds, and films], and pharmacological activity are proposed and discussed for the application of pharmaceutics and tissue engineering. Also, local drug delivery devices proposed in this work are introduced in view of preparation method, drug release behavior, biocompatibility, pharmacological effect, and animal studies. In conclusion, we can control the drug release profiles varying with the preparation, formulation and geometrical parameters. Moreover, any types of drug were successfully applicable to achieve linear sustained release from short period ($1{\sim}3$ days) to long period (over 2 months). It is very important to design a suitable formulation for the wanting period of bioactive molecules loaded in biodegradable polymers for the local delivery of drug. The drug release is affected by many factors such as hydrophilicity of drug, electric charge of drug, drug loading amount, polymer molecular weight, the monomer composition, the size of implants, the applied fabrication techniques, and so on. It is well known that the commercialization of new drug needs a lot of cost of money (average: over 10 million US dollar per one drug) and time (average: above 9 years) whereas the development of DDS and high effective generic drug might be need relatively low investment with a short time period. Also, one core technology of DDS can be applicable to many drugs for the market needs. From these reasons, the DDS research on potent generic drugs might be suitable for less risk and high return.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

Kinetic Investigation of CO2-CH4 Reaction over Ni/La2O3 Catalyst using Photoacoustic Spectroscopy

  • Oh, Hyun-Jin;Kang, Jin-Gyu;Heo, Eil;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2615-2620
    • /
    • 2014
  • Ni/$La_2O_3$ with a high dispersion was prepared by reduction of $La_2O_3$ perovskite oxide to examine the catalytic activity for the $CO_2-CH_4$ reaction. The Ni/$La_2O_3$ catalyst was found to be highly active for the reaction. The ratios of $H_2$/CO were measured in a flow of the reaction mixture containing $CO_2/CH_4$/Ar using an on-line gas chromatography system operated at 1 atm and found to be varied with temperature between 0.66 and 1 in the temperature range of $500-800^{\circ}C$. A kinetic study of the catalytic reaction was performed in a static reactor at 40 Torr total pressure of $CO_2/CH_4/N_2$ by using a photoacoustic spectroscopy technique. The $CO_2$ photoacoustic signal varying with the concentration of $CO_2$ during the catalytic reaction was recorded as a function of time. Rates of $CO_2$ disappearance in the temperature range of $550-700^{\circ}C$ were obtained from the changes in the $CO_2$ photoacoustic signal at early reaction stage. The plot of ln rate vs. 1/T showed linear lines below and above $610^{\circ}C$. Apparent activation energies were determined to be 10.4 kcal/mol in the temperature range of $550-610^{\circ}C$ and 14.6 kcal/mol in the temperature range of $610-700^{\circ}C$. From the initial rates measured at $640^{\circ}C$ under various partial pressures of $CO_2$ and $CH_4$, the reaction orders were determined to be 0.43 with respect to $CO_2$ and 0.33 with respect to $CH_4$. The kinetic results were compared with those reported previously and used to infer a reaction mechanism for the Ni/$La_2O_3$-catalyzed $CO_2-CH_4$ reaction.

Dosimetric Effect on Selectable Optimization Parameters of Volumatric Modulated Arc Therapy (선택적 최적화 변수(Selectable Optimization Parameters)에 따른 부피적조절회전방사선치료(VMAT)의 선량학적 영향)

  • Jung, Jae-Yong;Shin, Yong-Joo;Sohn, Seung-Chang;Kim, Yeon-Rae;Min, Jung-Wan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • The aim of this study is to evaluate plan quality and dose accuracy for Volumetric Modulated Arc Therapy (VMAT) on the TG-119 and is to investigate the effects on variation of the selectable optimization parameters of VMAT. VMAT treatment planning was implemented on a Varian iX linear accelerator with ARIA record and verify system (Varian Mecical System Palo Alto, CA) and Oncentra MasterPlan treatment planning system (Nucletron BV, Veenendaal, Netherlands). Plan quality and dosimetric accuracy were evaluated by effect of varying a number of arc, gantry spacing and delivery time for the test geometries provided in TG-119. Plan quality for the target and OAR was evaluated by the mean value and the standard deviation of the Dose Volume Histograms (DVHs). The ionization chamber and $Delta^{4PT}$ bi-planar diode array were used for the dose evaluation. For treatment planning evaluation, all structure sets closed to the goals in the case of single arc, except for the C-shape (hard), and all structure sets achieved the goals in the case of dual arc, except for C-shape (hard). For the variation of a number of arc, the simple structure such as a prostate did not have the difference between single arc and dual arc, whereas the complex structure such as a head and neck showed a superior result in the case of dual arc. The dose distribution with gantry spacing of $4^{\circ}$ was shown better plan quality than the gantry spacing of $6^{\circ}$, but was similar results compared with gantry spacing of $2^{\circ}$. For the verification of dose accuracy with single arc and dual arc, the mean value of a relative error between measured and calculated value were within 3% and 4% for point dose and confidence limit values, respectively. For the verification on dose accuracy with the gantry intervals of $2^{\circ}$, $4^{\circ}$ and $6^{\circ}$, the mean values of relative error were within 3% and 5% for point dose and confidence limit values, respectively. In the verification of dose distribution with $Delta^{4PT}$ bi-planar diode array, gamma passing rate was $98.72{\pm}1.52%$ and $98.3{\pm}1.5%$ for single arc and dual arc, respectively. The confidence limit values were within 4%. The smaller the gantry spacing, the more accuracy results were shown. In this study, we performed the VMAT QA based on TG-119 procedure, and demonstrated that all structure sets were satisfied with acceptance criteria. And also, the results for the selective optimization variables informed the importance of selection for the suitable variables according to the clinical cases.