• Title, Summary, Keyword: logharmonic mappings

Search Result 1, Processing Time 0.032 seconds

LOGHARMONIC MAPPINGS WITH TYPICALLY REAL ANALYTIC COMPONENTS

  • AbdulHadi, Zayid;Alarifi, Najla M.;Ali, Rosihan M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1783-1789
    • /
    • 2018
  • This paper treats the class of normalized logharmonic mappings $f(z)=zh(z){\overline{g(z)}}$ in the unit disk satisfying ${\varphi}(z)=zh(z)g(z)$ is analytically typically real. Every such mapping f admits an integral representation in terms of its second dilatation function and a function of positive real part with real coefficients. The radius of starlikeness and an upper estimate for arclength are obtained. Additionally, it is shown that f maps the unit disk into a domain symmetric with respect to the real axis when its second dilatation has real coefficients.