• Title, Summary, Keyword: magnetostrictive type sensor

Search Result 8, Processing Time 0.045 seconds

Study on Rod Position Indication System using Permanent Magnets with Shielding Plates for a Control Rod Drive Mechanism

  • Lee, Jae Seon;Cho, Sang Soon;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.439-443
    • /
    • 2015
  • A control rod drive mechanism (CRDM) is an electromechanical equipment that provides linear movement for the control rods to control the nuclear reactivity in a nuclear reactor. A rod position indication system (RPIS) detects the control rod's position. To enhance the measurement accuracy of the system, a magnetostrictive type sensor with capability of generating operation limiting signals would be adapted instead of a conventional RPIS for a CRDM. An RPIS was modelled for a numerical analysis with the permanent magnets at the stationary limit positions and magnetic shielding plates with a moving permanent magnet. The performance analysis of the RPIS were conducted, and the results were discussed here.

Design and Fabrication of Magnetostrictive Transducers for Scanning OPMT Development (주사형 OPMT 개발을 위한 자왜형 초음파 변환기 설계 및 제작)

  • Lee, Ho-Cheol;Kim, Hyeng-Yoon;Kim, Y.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.856-859
    • /
    • 2005
  • The OPMT(Orientation-adjustable Patch-type Magnetostrictive Transducer) was proposed as a tool for generating and measuring the ultrasonic Lamb wave in plate type structures. This sensor has a lot of new features compared to the traditional piezo-type ultrasonic transducers. As an example, it does not need any kind of wiring for lunching or measuring ultrasonic waves. But it has also definite limitation for practical usage as a nondestructive testing tool in that it cannot help rotating the direction of ultrasonic wave manually. The idea for 'scanning OPMT' is proposed in this respect. Two kinds of basic ideas for rotating the wave direction not manually but electrically are proposed. The fabrication of the transducer and the testing for Identifying the primary characteristics are done for one of the proposed transducers. The results says that there are the possibilities as a new tool for NDE in that the proposed transducer follows well the characteristics of the traditional OPMT. But there are also the 1imitations to overcome.

  • PDF

Fabrication process for micro magnetostrictive sensor using micromachining technique (Micromachining을 이용한 초소형 자왜 센서 제작공정 연구)

  • 김경석;고중규;임승택;박성영;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 1999
  • The fabrication process for miniaturizing the Electronic Article Surveillance (EAS) sensor was studied using micromachining technique. Two types of sensor structure, free standing membrane type and diving beard type, were proposed and researched for establishing the fabrication process. The membrane type structure was easy to change the sensor shape but had the limitation for miniaturizing, because the size of the sensor depends on the silicon substrate thickness. The diving board type structure has the advantage of miniaturization and of free motion. Since the elastic modulus is not trio high, SiN film is expected to be adequate for the supporting membrane of magnetic sensor. The selectivity of $H_2O_2$for sputtered W with respect to Fe-B-Si, which was studded for magnetic sensor materials, was high enough to be removed after using as a protection layer. Therefore, the diving board type process using the silicon nitride film for the supporter of the sensor material and the sputtered W for protection layer is expected to be useful fur miniaturizing the Electronic Article Surveillance (EAS) sensor.

  • PDF

Development of sensors with mode-selective measuring capability of ultrasonic waves traveling on a cylindrical shaft (축을 따라 전파되는 초음파 모드의 선택적 측정이 가능한 센서 개발)

  • Lee, Ho-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.336-339
    • /
    • 2007
  • A sensor having capability to measure two different kinds of ultrasonic waves selectively is described. Under the same bias field configuration, this magnetostrictive type sensor can selectively measure longitudinal waves and flexural ones. Since the switching operation of mode selection is made only by changing the polarity of the permanent magnets used to configure the bias field, it will be very useful after the permanent magnet are interchanged with electromagnets. In order to find the optimal operating bias field, finite elements analysis is used and the condition for flexural wave measurements to meet is found. The linearity of the sensor is verified by experiments and the requirements for linearity also are proposed.

  • PDF

Measurement of plastic anisotropy of cold rolled steel sheets using electromagnetic acoustic transducer (EMAT를 이용한 냉연강판의 소성이방성 측정)

  • 황의찬;장경영;안봉영;이승석;김수광;김상영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.383-388
    • /
    • 1994
  • Ultrasonic sensor for evaluating plastic anisotropy was developed. Magnetostrictive type EMAT is sensor to transmit and receive the Lamb wave using magnetostriction. It is suitable for on line processing because of transmitting and receiving ultrasonic without contact ODCs(orientation distribution coefficients), W $_{400}$. W $_{420}$. W $_{440}$. were respectively calculated using zeroth order Lamb wave velocities, the calculated ODCs was used for evaluating plastic anisotropy, the results was compared for mean values of destructive tests. Besides, the Lorentz EMAT for generating longitudinal wave and two shear waves simultaneously and the Lorentz type EMAT for measuring SH wave velocities were made. ODCs were calculated using the measured resonant modes and velocities. the results of two methods show possibility of an line processing measurement.

  • PDF

The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler (보일러내 열 전달 효율 개선을 위한 초음파발신기 개발)

  • Heo, Pil-Woo;Lee, Yang-Lae;Lim, Eui-Su;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • Ultrasonic transmitter used for scale prevention in boiler or heat exchanger is composed of the magnetostrictive material which transforms electric energy into ultrasonic wave and the horn which amplifies generated ultrasonic wave and transfers it into medium loaded. In this paper, we have performed the shape design for magnetostrictive material and analyzed a few type of horns which amplify generated ultrasonic wave and found each solution theoretically. Final length of the horn has been determined by measuring the sound pressure in medium between theoretical value and experience data. At last we have given the results of our study for the effects of ultrasonic wave irradiated by manufactured ultrasonic transmitter on preventing scale deposition on test pipe under the similar condition to boiler.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.