• Title, Summary, Keyword: mating type

Search Result 185, Processing Time 0.055 seconds

Studies on the mating type substance in Paramecium aurelia (짚신벌레의 성물질 합성에 대한 연구)

  • 강현삼
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.123-137
    • /
    • 1975
  • Sexual reproduction of paramecia have been accomplished through conjugation between individuals which have opposite mating type substances on their cilia when they were starved. Using selfing clone in which mating takes place, I examined whether a mating type change in indicidual cells required new protein and new mRNA synthesis or not and also shether there is a precursor relationship between both of the complementary mating type substances in their synthetic pathway. I found that 1. Mating type change needs new protein(s) and new mRNA synthesis. 2. Mating type substances are synthesized sequentially from mating type XIII to XIV 3. There might be a common precursor pool from which the mating type XIII substnace is synthesized and then complementary mating type XIV is fromed by addition of small group to the mating type XIII substance.

  • PDF

Diversity and distribution of mating types in Lentinula edodes and mating type preference in domesticated strains

  • Ha, Byeong-Suk;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • /
    • pp.37-37
    • /
    • 2018
  • Mating type of Lentinula edodes is determined by two unlinked genetic loci, A and B. To better understand mating behavior of L. edodes, we investigated variations in mating type genes in129 dikaryotic strains collected from East Asia. Through sequence analysis of A locus, we discovered that hypervariable region spanning N-term of HD2-intergenic region-N-term of HD1 could represent A mating type. Mating and hypervariable region analyses revealed 70 unique A mating types: 27 from 98 cultivated strains, 53 from 31 wild strains, and 10 commonly found. It was also revealed that only a few A mating type alleles such as A1, A4, A5, and A7 were prevalent in cultivated strains. Contrarily, A mating type in wild strains was highly diverse: 23 unique A alleles were discovered in small mountainous area in Korean peninsula, suggesting rapid evolution of A mating type in nature. The B locus was assessed by allelic variations in pheromone (PHB) and pheromone receptor (RCB) pairs which constituted subloci Ba and Bb. Sequence analyses and mating assay revealed 5 alleles of RCB1 with 9 associated PHBs in Ba sublocus and 3 alleles of RCB2 with 5 associated PHBs in Bb sublocus. Each RCB was primarily associated with two PHBs. Each PHB-RCB pair was always discovered as a distinct unit. This allowed us to propose 15 B mating types via combinations of five Ba and three Bb subloci. Further investigation on 129 strains confirmed that the B locus, unlike the A locus, was indeed restricted to 15 mating types. Thus, the total number of mating types became 1,050 in L. edodes through a combination of 70 A and 15 B. This number will further increase because of rapid diversification of A mating type. Our findings provide a comprehensive and practical knowledge on mating behaviors of L. edodes.

  • PDF

SCAR Marker Linked with A1 Mating Type Locus in Phytophthora infestans

  • Zhang Xuan-Zhe;Seo Hyo-Won;Ahn Won-Gyeong;Kim Byung-Sup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.724-730
    • /
    • 2006
  • A sequence characterized amplified region (SCAR) marker, which was tightly linked with the A1 mating type locus in Phytophthora infestans, was developed. During the random amplified polymorphic DNA-based phylogenic studies of 33 isolates of P infestans collected from year 2002 to 2004, we found an A1 mating type-specific DNA fragment. This 573-bp DNA fragment was generated only in the genomic DNA of the A1 mating types, when OPC-5 primer was used. Based on the specific DNA sequence, we designed the primer sets for generating the A1 mating type-specific 569-bp DNA fragment. When 33 genomic DNAs of P. infestans were subjected to PCR amplification using different primer combinations, the A1 mating type-specific DNA was amplified, when LB-1F and LB-2R primers were used. The specific 569-bp DNA fragment was generated only from all 18 A1 strains, but not from 15 A2 mating type strains. These results corresponded to the mating type discriminating bioassay of 33 isolates of P. infestans. Therefore, the primer combination of LB-1F/LB2R was chosen as a SCAR marker. Overall, this study indicates that the SCAR marker could be developed into a useful tool for mating type determination of P. infestans.

Genetic DNA Marker for A2 mating type in Phytophthora infestans

  • Kim, Kwon-Jong;Lee, Youn-Su
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.254-259
    • /
    • 2002
  • The Phytophthora infestans requires two mating types for sexual reproduction. Amplified fragment length polymorphism (AFLP) was used to specifically detect different mating types of P. infestans. The AFLP primers E+AA (5'-GACTGCGTACCAATTCAA-3') and M+CAA (5'-GATGAGTCCTGAG-TAAC AA-3') detected a fragment that is specific in the A2 mating type of P. infestans. This fragment was cloned and sequenced. Based on the sequence data, PHYB-1 and PHYB-2 primer were designed to detect the A2 mating type of P. infestans. A single 347 bp segment was observed in the A2 mating type of P. infestans, but not in the A1 mating type of P. infestans or other Phytophthora spp. Identification of mating type was performed with phenotype (sexual reproduction) and genotype (CAPs marker) methods. Two factors, the annealing temperature and template DNA quantity, were investigated to determine the optimal conditions. Using mating type-specific primers, a unique band was obtained within annealing temperatures of 57$^{\circ}C$-62$^{\circ}C$ and DNA levels of 10pg-100 ng (data not shown).

Analysis of Mating System in Lentinula edodes and Development of Mating Type-Specific Markers

  • Ha, Byung-Suk;Kim, Sinil;Ro, Hyeon-Su
    • 한국균학회소식:학술대회논문집
    • /
    • /
    • pp.42-42
    • /
    • 2014
  • Mating of tetrapolar mushrooms is regulated by to chromosomal loci, A and B. A locus contains A gene that expresses a homeodomain protein whereas B locus contains multiple pheromones and receptor genes. In order to characterize the mating loci in Korean cultivated strains of Lentinula edodes, one hundred monokaryotic myclelia were isolated from the basidiospores of cultivated strains, including Cham-A-Ram, Sanjo701, and Sanjo707. Both mating loci were amplified using primer sets targeting conserved sequence regions for homeodomain (HD), pheromone, and receptor genes. Subsequent sequence analysis revealed that the Korean strains contained significant variations in the homeodomain of A locus, even within the same A1 or A2 mating type. Similarly, B locus was also highly diversified in the sequences of pheromones and receptors as well as gene organization. These results enabled us to design mating type-specific probes which can distinguish mating type of each strain. The specificity was confirmed by between intra- and inter-strain mating experiment.

  • PDF

Mating Types of Phytophthora capsici Leonian from Red-pepper ( Capsicum annuum L.) in Korea (고추역병균(疫病菌)(Phytophthora capsici Leonian)의 배우자형(配偶子型) 분포(分布))

  • Kim, Jeong-Soo;Do, Tae-Hong;Cho, Eui-Kyoo;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.16 no.2
    • /
    • pp.60-63
    • /
    • 1988
  • Each of 103 isolates of Phytophthora capsici was obtained from diseased red pepper plants randomly belonged to either the mating type $A_1$ or the mating type $A_2$. Fifty four isolates were classified as mating type $A_1$, and 49 isolates were classified as mating type $A_2$.Oospores were formed in each combination of isolates between $A_1$ or $A_2$ on 5% V-8 juice agar except one combination.

  • PDF

Mating-type-specific inhibition of phosphorylation by sexual pheromone (Rh. A) on heterobasidiomycetous yeast Rhodosporidium toruloides. (이담자효모 Rhodosporidium toruloides의 성pheromone(Rh.A)에 의한 성접합형 특이적 인산화 저해 반응)

  • 정영기
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.322-328
    • /
    • 1997
  • Two phosphorylated proteins having molecular weights of 57kD and 72kD were detected from the slubilized membrane protein fraction of mating type a cells of Rhodosporidium toruloides which belongs to heterobasidiomycetous yeast. The phosphorylation of the protein was inhibited by a sexual pheromone, Rhodotorucine A (Rh. A), which is secreted from mating type a cells. On the other hand, counterpart mating type A cells and M-39 strain which is a styerile mutant derived from a cells, had also the same two phosphorylated proteins, However, the phosphorylation of the protein from A cells, and M-39 strain were not inhibited by the Rh. A. It suggests that inhibition of the phosphorylation reaction by the Rh. A in mating type a cells is a mating-type-specific reaction that relate to transduction mechanism of sexual pheromone signaling.

  • PDF

Activation of the Mating Pheromone Response Pathway of Lentinula edodes by Synthetic Pheromones

  • Ha, Byeongsuk;Kim, Sinil;Kim, Minseek;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.407-415
    • /
    • 2018
  • Pheromone (PHB)-receptor (RCB) interaction in the mating pheromone response pathway of Lentinula edodes was investigated using synthetic PHBs. Functionality of the C-terminally carboxymethylated synthetic PHBs was demonstrated by concentration-dependent induction of a mating-related gene (znf2) expression and by pseudoclamp formation in a monokaryotic strain S1-11 of L. edodes. Treatment with synthetic PHBs activated the expression of homeodomain genes (HDs) residing in the A mating type locus, and of A-regulated genes, including znf2, clp1, and priA, as well as genes in the B mating type locus, including pheromone (phb) and receptor (rcb) genes. The synthetic PHBs failed to discriminate self from non-self RCBs. PHBs of the B4 mating type (B4 PHBs) were able to activate the mating pheromone response pathway in both monokaryotic S1-11 and S1-13 strains, whose B mating types were B4 (self) and B12 (non-self), respectively. The same was true for B12 PHBs in the B4 (non-self) and B12 (self) mating types. The synthetic PHBs also promoted the mating of two monokaryotic strains carrying B4-common incompatible mating types ($A5B4{\times}A1B4$). However, the dikaryon generated by this process exhibited abnormally high content of hyphal branching and frequent clamp connections and, more importantly, was found to be genetically unstable due to overexpression of mating-related genes such as clp1. Although synthetic PHBs were unable to discriminate self from non-self RCBs, they showed a higher affinity for non-self RCBs, through which the mating pheromone response pathway in non-self cells may be preferentially activated.

Changes in Frequencies and Distribution of A2 Mating Type and Metalaxyl-Resistant Isolates of Phytophthora infestans in Korea (우라나라 감자 역병균 A2 교배형 및 Metalaxyl 저항성균의 빈도 및 분포의 변화)

  • ;;W. E. Fry
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.92-98
    • /
    • 1994
  • Phytophthora infestans populations collected from various geographical locations of Korea in 1991 and 1993 were analyzed for mating types and responses to metalaxyl. Both A1 and A2 mating type isolates were detected in 1991. The majority of the isolates were A2 mating type, but no A1 mating type was detected in 1993. About 40% of the isolates collected in 1991 were resistant to metalaxyl, and the distribution of metalaxyl-resistant isolates of P. infestans was strongly associated with their geographic origins in Korea. Metalaxyl-resistant isolates with EC50 values > 50$\mu\textrm{g}$/ml were collected from the northern provinces of Kangwon, Kyungbuk, and Chonbuk, but not from the southern provinces of Kyungnam, Chonnam, and Jeju in 1991. The drastic increase in the degree of quantitative resistance to metalaxyl was detected among the isolates from the southern provinces during 1991~1993. More than 50% of the isolates collected from the southern provinces of Kyungnam and Chonnam in 1993 had EC50 values >50$\mu\textrm{g}$/ml. The province of Kangwon had isolates with the greatest resistance to metalaxyl. this alpine areas might be the origin of metalaxyl-resistant isolates of P. infestans in Korea. The A2 genotype with metalaxyl resistance appears to be displacing the A1 genotype which is presently the predominant genotype in Korea.

  • PDF

A Genetic Marker Associated with the A1 Mating Type Locus in Phytophthora infestans

  • KIM KWON-JONG;EOM SEUNG-HEE;LEE SANG-PYO;JUNG HEE-SUN;KAMOUN SOPHIEN;LEE YOUN SU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.502-509
    • /
    • 2005
  • Sexual reproduction plays an important role in the biology and epidemiology of oomycete plant pathogens such as the heterothallic species Phytophthora infestans. Recent worldwide dispersal of A2 mating type strains of P. infestans resulted in increased virulence, gene transfer, and genetic variation, creating new challenges for disease management. To develop a genetic assay for mating type identification in P. infestans, we used the Amplified Fragment Length Polymorphism (AFLP) technique. The primer combination E+AT/M+CTA detected a fragment specific to A1 mating type (Mat-A1) of P. infestans. This fragment was cloned and sequenced, and a pair of primers (INF-1, INF-2) were designed and used to differentiate P. infestans Mat-A1 from Mat-A2 strains. The Mat A1-specific fragment was detected using Southern blot analysis of PCR products amplified with primers INF-1 and INF-2 from genomic DNA of 14 P. infestans Mat-A1 strains, but not 13 P. infestans Mat-A2 strains or 8 other isolates representing several Phytophthora spp. Southern blot analysis of genomic DNAs of P. infestans isolates revealed a 1.6 kb restriction enzyme (EcoRI, BamHI, AvaI)-fragment only in Mat-A1 strains. The A1 mating type-specific primers amplified a unique band under stringent annealing temperatures of $63^{\circ}C-64^{\circ}C$, suggesting that this PCR assay could be developed into a useful method for mating type determination of P. infestans in field material.