• Title, Summary, Keyword: melittin

Search Result 109, Processing Time 0.036 seconds

Comparative Study on the Nociceptive Responses Induced by Whole Bee Venom and Melittin

  • Shin, Hong-Kee;Lee, Kyung-Hee;Lee, Seo-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.281-288
    • /
    • 2004
  • The present study was undertaken to confirm whether melittin, a major constituent of whole bee venom (WBV), had the ability to produce the same nociceptive responses as those induced by WBV. In the behavioral experiment, changes in mechanical threshold, flinching behaviors and paw thickness (edema) were measured after intraplantar (i.pl.) injection of WBV (0.1 mg & 0.3 mg/paw) and melittin (0.05 mg & 0.15 mg/paw), and intrathecal (i.t.) injection of melittin $(6{\mu}g)$. Also studied were the effects of i.p. (2 mg & 4 mg/kg), i.t. $(0.2{\mu}g\;&\;0.4{\mu}g)$ or i.pl. (0.3 mg) administration of morphine on melittin-induced pain responses. I.pl. injection of melittin at half the dosage of WBV strongly reduced mechanical threshold, and increased flinchings and paw thickness to a similar extent as those induced by WBV. Melittin- and WBV-induced flinchings and changes in mechanical threshold were dose- dependent and had a rapid onset. Paw thickness increased maximally about 1 hr after melittin and WBV treatment. Time-courses of nociceptive responses induced by melittin and WBV were very similar. Melittin-induced decreases in mechanical threshold and flinchings were suppressed by i.p., i.t. or i.pl. injection of morphine. I.t. administration of melittin $(6{\mu}g)$ reduced mechanical threshold of peripheral receptive field and induced flinching behaviors, but did not cause any increase in paw thickness. In the electrophysiological study, i.pl. injection of melittin increased discharge rates of dorsal horn neurons only with C fiber inputs from the peripheral receptive field, which were almost completely blocked by topical application of lidocaine to the sciatic nerve. These findings suggest that pain behaviors induced by WBV are mediated by melittin-induced activation of C afferent fiber, that the melittin-induced pain model is a very useful model for the study of pain, and that melittin-induced nociceptive responses are sensitive to the widely used analgesics, morphine.

One-Step Purification of Melittin Derived from Apis mellifera Bee Venom

  • Teoh, Angela Ching Ling;Ryu, Kyoung-Hwa;Lee, Eun Gyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • The concern over the use of melittin in honey bee venom due to its adverse reaction caused by allergens such as phospholipase A2 ($PLA_2$) and hyaluronidase (HYA) has been an obstacle towards its usage. We developed a novel single-step method for melittin purification and the removal of $PLA_2$ and HYA. This study explores the influence of pH, buffer compositions, salt concentration, and types of cation-exchange chromatography resins on the recovery of melittin and the removal of both HYA and $PLA_2$. Melittin was readily purified with a strong cation-exchange resin at pH 6.0 with sodium phosphate buffer. It resulted in a recovery yield of melittin up to 93% (5.87 mg from a total of 6.32 mg of initial melittin in crude bee venom), which is higher than any previously reported studies on melittin purification. $PLA_2$ (99%) and HYA (96%) were also successfully removed. Our study generates a single-step purification method for melittin with a high removal rate of $PLA_2$ and HYA, enabling melittin to be fully utilized for its therapeutic purposes.

Melittin-induced Nociceptive Responses are Alleviated by Cyclooxygenase-1 Inhibitor

  • Kim, Joo-Hyun;Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • Melittin-induced pain model has been known to be very useful for the study of pain mechanism. Melittin-induced nociceptive responses are reported to be modulated by the changes in the activity of excitatory amino acid receptor, calcium channel, spinal serotonin receptor and extracellular signaling-regulated kinase. The present study was undertaken to investigate the role of cyclooxygenase (COX) in the melittin-induced nociception. Changes in mechanical threshold, flinchings and paw thickness were measured before and after intraplantar injection of melittin in the rat hind paw. Also studied were the effects of intraperitonealy administered diclofenac (25 mg & 50 mg/kg), piroxicam (10 mg & 20 mg/kg) and meloxicam (10 mg & 20 mg/kg) on the melittin-induced nociceptions. Intraplantar injection of melittin caused marked reduction of mechanical threshold that was dose-dependently attenuated by non-selective COX inhibitor (diclofenac) and selective COX-1 inhibitor (piroxicam), but not by COX-2 inhibitor (meloxicam). Melittin-induced flinchings were strongly suppressed by non-selective COX and COX-1 inhibitor, but not by COX-2 inhibitor. None of the COX inhibitors had inhibitory effects on melittin-induced increase of paw thickness (edema). These experimental findings suggest that COX-1 plays an important role in the melittin-induced nociceptive responses.

Multiple 5-Hydroxytryptamine(5-HT) Receptors Are Involved in the Melittin-induced Nociceptive Responses in Rat I. Role of Peripheral 5-HT Receptor

  • Shin, Hong-Kee;Lee, Seo-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.221-226
    • /
    • 2007
  • Melittin-induced tonic pain model is characterized by local inflammation, edema, spontaneous flinchings, and sustained mechanical hypersensitivity. These nociceptive responses are mediated through selective activation of capsaicin-sensitive primary afferent fibers by melittin. The present study was undertaken to elucidate the role of peripheral 5-hydroxytryptamine(5-HT) receptors in the melittin-induced nociceptive responses. Changes in mechanical threshold, flinching behaviors and paw thickness were measured in rat intraplantarly injected with melittin($40{\mu}g/paw$) alone or treated together with melittin and 5-HT receptor antagonists. WAY-100635($100{\mu}g\;&\;200{\mu}g/paw$), isamoltane hemifumarate($100{\mu}g\;&\;200{\mu}g/paw$), methysergide maleate($60{\mu}g,\;120{\mu}g\;&\;200{\mu}g/paw$) and ICS-205,930($100{\mu}g\;&\;200{\mu}g/paw$) were intraplantarly injected 20 min before melittin injection. All 5-HT receptor antagonists tested in this experiment significantly attenuated the ability of melittin to reduce mechanical threshold and to induce flinching behaviors. 5-HT receptor antagonists, except ICS-205,930, had mild inhibitory effect on melittin-induced edema. These experimental findings suggest that multiple peripheral 5-HT receptors are involved in the melittin-induced nociceptive responses.

The Study of Anti-cancer Mechanism with Bee Venom and Melittin on Human Prostatic Cancer Cell (전립선 암세포에 대한 봉약침액(蜂藥浸液) 및 Melittin 약침액(藥浸液)의 항암(抗癌) 기전(機轉) 연구(硏究))

  • Kim, Kyung-Tae;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.6
    • /
    • pp.37-50
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-caner effect of Bee Venom and Melittin on the prostatic cancer cell(PC-3). The goal of study is to ascertain whether Bee Venom and Melittin inhibits the cell growth and cell cycle of PC-3, or the expression of relative genes and whether the regression of PC-3 cell growth is due to cell death or the expression of gene related to apoptosis. Methods : After the treatment of Pc-3 cells with Bee Venom and Melittin, we performed Fluorescence microscope, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify the cell viability, apoptosis and gene related to apoptosis. Results : 1. Compared with Control cell, the inhibition of cell growth reduced in proportion with the dose of Bee Venom or Melittin($0{\sim}10{\mu}g/ml$) in PC-3. 2. In PC-3, Cell viabilities of Bee Venom or Melittin treatment was decreased significantly. 3. The nucli of Control cells were stained round and homogenous in DAPI staining, but those of PC-3 were stained condense and splitted. 4. In PC-3, apoptosis of Bee Venom or Melittin treatment was increased significantly. 5. Bax, Caspase-3 and P ARP of Bee Venom or Melittin treatment was increased significantly and Bcl-2 of Bee Venom or Melittin treatment was decreased significantly. Caspase-9 of Bee venom treatment was increased significantly. Conclusion : These results indicate that Bee Venom and Melittin inhibits the growth of prostate cancer cells, has anti-cancer effects by inducing apoptosis. We wish that the anti-cancer effects of Bee Venom and Melittin are used to clinical caner treatment.

  • PDF

The Study of $NF-{\kappa}B(P50)$ Suppression mechanism with main Component of Bee Venom and Melittin on Human Synoviocyte

  • Kwon, Soon-Jung;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2005
  • Melittin,cationic 26-amino acid, is the principal component of the bee venom (BV) which has been used for treatment of inflammatory disease such as arthritis rheumatism NF-kB is activated by subsequent release of inhibitory IkB via activation of a multisubunit IkB kinase (IKK). We previously found that melittin bind to the sulfhydryl group of p50, a subunit of NF-kB. Since sulfhydryl group is present in kinase domain of IKKa and IKKb, melittin could modify IKK activity by protein-protein interaction. We therefore examined effect of melittin on IKK activities in sodium nitroprusside (SNP)-stimulated synoviocyte obtained from RA patients. Melittin suppressed the SNP-induced release of IkB resulted in inhibition of DNA binding activity of NF-kB and NF-kB-dependent luciferase activity. Consistent with the inhibitory effect on NF-kB activation, IKKa and IKKb activities were also suppressed by melittin. Surface plasmon resonance analysis realized that melitin binds to IKKa $(Kd\;=\;1.34{\times}10-9M)$ and IKKb$(Kd\;=\;1.0{\times}10-9M)$. Inhibition of IKKa and IKKb resulted in reduction of the SNP-induced production of inflammatory mediators NO and PGE2 generation. The inhibitory effect of melittin on the IKKs activities, binding affinity of melittin to IKKs, and NO and PGE2 generation were blocked by addition of reducing agents dithiothreitol and glutathione. In addition, melittin did not show inhibitory effect in the transfected Synoviocytes with plasmid carrying dominant negative mutant IKKa (C178A) and IKKb (C179A). These results demonstrate that melittin directly binds to sulfhydryl group of IKKs resulting in IkBrelease, thereby inhibits activation of NF-kB and expression of genes involving in the inflammatory responses.

  • PDF

N-methyl-D-aspartate (NMDA) and Non-NMDA Receptors are Involved in the Production and Maintenance of Nociceptive Responses by Intraplantar Injection of Bee Venom and Melittin in the Rat

  • Kim, Jae-Hwa;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Whole bee venom (WBV) and its major component, melittin, have been reported to induce long-lasting spontaneous flinchings and hyperalgesia. The current study was designed to elucidate the peripheral and spinal mechanisms of N-methyl-D-aspartate (NMDA) and non-NMDA receptors by which intraplantar (i.pl.) injection of WBV and melittin induced nociceptive responses. Changes in mechanical threshold and flinching behaviors were measured after the injection of WBV (0.04 mg or 0.1 mg/paw) and melittin (0.02 mg or 0.05 mg/paw) into the mid-plantar area of a rat hindpaw. MK-801 and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione disodium) were administered intrathecally (i.t. $10{\mu}g$) or i.pl.($15{\mu}g$) 15 min before or i.t. 60 min after i.pl. WBV and melittin injection. Intrathecal pre- and postadministration of MK-801 and CNQX significantly attenuated the ability of high dose WBV and melittin to reduce paw withdrawal threshold (PWT). In the rat injected with low dose, but not high dose, of WBV and melittin, i.pl. injection of MK-801 effectively suppressed the decrease of PWTs only at the later time-points, but the inhibitory effect of CNQX (i.pl.) was significant at all time-point after the injection of low dose melittin. High dose WBV- and melittin-induced spontaneous flinchings were significantly suppressed by i.t. administration of MK-801 and CNQX, and low dose WBV- and melittin-induced flinchings were significantly reduced only by intraplantarly administered CNQX, but not by MK-801. These experimental flinchings suggest that spinal, and partial peripheral mechanisms of NMDA and non-NMDA receptors are involved in the development and maintenance of WBV- and melittin-induced nociceptive responses.

The Effects of Bee Venom and Melittin on NO, iNOS and MAP Kinase Family in RAW 264.7Cellscells (봉양침액(蜂藥鍼液)과 melittin이 RAW 264.7세포(細胞)의 NO, iNOS 및 MAPK에 미치는 영향(影響))

  • Kang, Jun;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.107-119
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and melittin on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expressions of Cell viability, nitric oxide(NO), inducible nitric oxide synthase(iNOS), extra-signal response kinase(ERK), jun N-terminal Kinase(JNK) and p38 kinase(p38)- mitogen activated protein kinase(MAPK) Family- in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of cell viability by MTT assay, NO by Nitrite assay and iNOS, ERK, JNK and p38 were determined by Western blotting. Results : 1. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin increased cell viability of RAW 264.7 induced by LPS and SNP significantly respectively. 2. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of NO induced by LPS and SNP significantly respectively. 3. Compared with the control group, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by LPS significantly and 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by SNP significantly. 4. Compared with the control group, the expression of ERK induced by LPS and SNP decreased significantly in the treatment groups of $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, which of p-ERK by LPS also did in 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, but which of p-ERK by SNP did not decrease. 5. Compared with the control group, the. expression of JNK induced by LPS and SNP decreased significantly in the treatment groups of 5, $10{\mu}g/m{\ell}$ melittin, which of p-JNK by LPS in 5, $10{\mu}g/m{\ell}$ melittin and by SNP in $1{\mu}g/m{\ell}$ bee venom and $10{\mu}g/m{\ell}$ melittin decreased significantly. 6. Compared with the control group, the expression of p38 induced by LPS did not have significant difference, which induced by SNP decreased significantly in the treatment groups of 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin. p-p38 induced by LPS decreased significantly in the treatment group of $10{\mu}g/m{\ell}$ of melittin, which induced by SNP also decreased significantly in 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin.

  • PDF

Melittin Inhibits Human Prostate Cancer Cell Growth through Induction of Apoptotic Cell Death

  • Park Hye-Ji;Lee Yong-Kyung;Song Ho-Seub;Kim Goon-Joung;Son Dong-Ju;Lee Jae-Woong;Hong Jin-Tae
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • It was previously found that melittin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether melittin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, and the possible signal pathways. Melittin ($0{\sim}1\;{\mu}g/ml$) inhibited prostate cancer cell growth in a dose dependent manner. Conversely related to the growth inhibitory effect, melittin increased the induction of apoptotic cell death in a dose dependent manner. Melittin also inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptotic cell death and inhibition of $NF-{\kappa}B$, melittin increased the expression of pro-apoptotic proteins caspase-3, and Bax but down-regulated anti-apoptotic protein Bcl-2. These findings suggest that melittin could inhibit prostate cancer cell growth, and this effect may be related with the induction of apoptotic cell death via inactivation of $NF-{\kappa}B$.

The Inhibitory Effects of Bee Venom and Melittin on the Proliferation of Vascular Smooth Muscle Cells

  • Ha, Seong-Jong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.139-157
    • /
    • 2006
  • In the present study, I have investigated the bee venom (BV) and melittin (a major component of BV) -mediated anti-proliferative effects, and defined its mechanisms of action in cultured rat aortic vascular smooth muscle cells (VSMCs). BV and melittin $(0.4{\sim}0.8\;{\mu}g/ml)$ effectively inhibited 50 ng/ml platelet derived growth factor BB (PDGF-BB)-induced VSMCs proliferations. The regulation of apoptosis has attracted much attention as a possible means of eliminating excessively proliferating VSMCs. In the present study, the treatment of BV and melittin strongly induced apoptosis of VSMCs. I examined the effects on $NF-{\kappa}B$ activation to investigate a possible mechanism for anti-proliferative effects of BV and melittin, the PDGF-BB-induced $I{\kappa}B{\alpha}$ phosphorylation and its degradation were potently inhibited by melittin, and DNA binding activity and nuclear translocation of $NF-{\kappa}B$ p50 subunit in response to the action of PDGF-BB were potently attenuated by melittin. In further investigations, melittin markedly inhibited the PDGF-BB-induced phosphorylation of Akt but not ERK1/2, upstream signals of $NF-{\kappa}B$. Treatment of melittin also potently induced pro-apoptotic protein p53, Bax, and caspase-3 expression, but decreased anti-apoptotic protein Bcl-2 expression. These results suggest that the anti-proliferative effects of BV and melittin in VSMCs through induction of apoptosis via suppressions of $NF-{\kappa}B$ and Akt activation, and enhancement of apoptotic signal pathway. Based on these results, BV acupuncture can be a candidate as a therapeutic method for restenosis and atherosclerosis.

  • PDF