• Title, Summary, Keyword: meta-nilpotent group

Search Result 1, Processing Time 0.023 seconds


  • Shen, Zhencai;Shi, Wujie;Zhang, Jinshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1147-1155
    • /
    • 2011
  • In J. Korean Math. Soc, Zhang, Xu and other authors investigated the following problem: what is the structure of finite groups which have many normal subgroups? In this paper, we shall study this question in a more general way. For a finite group G, we define the subgroup $\mathcal{A}(G)$ to be intersection of the normalizers of all non-cyclic subgroups of G. Set $\mathcal{A}_0=1$. Define $\mathcal{A}_{i+1}(G)/\mathcal{A}_i(G)=\mathcal{A}(G/\mathcal{A}_i(G))$ for $i{\geq}1$. By $\mathcal{A}_{\infty}(G)$ denote the terminal term of the ascending series. It is proved that if $G=\mathcal{A}_{\infty}(G)$, then the derived subgroup G' is nilpotent. Furthermore, if all elements of prime order or order 4 of G are in $\mathcal{A}(G)$, then G' is also nilpotent.